Merging versatile polymer chemistry with multifunctional nanoparticles: an overview of crosslinkable aromatic polyester matrix nanocomposites
Autor: | Iwona Jasiuk, James Economy, Siyuan Pang, Mete Bakir, Jacob L. Meyer |
---|---|
Rok vydání: | 2020 |
Předmět: |
chemistry.chemical_classification
Materials science Nanocomposite Polymer nanocomposite Thermosetting polymer Nanotechnology 02 engineering and technology General Chemistry Material Design Polymer 010402 general chemistry 021001 nanoscience & nanotechnology Condensed Matter Physics 01 natural sciences 0104 chemical sciences Polyester chemistry Advanced composite materials In situ polymerization 0210 nano-technology |
Zdroj: | Soft matter. 16(6) |
ISSN: | 1744-6848 |
Popis: | The current trend in the global advanced material market is expeditiously shifting towards more lightweight, multifunctional configurations, considering very recent developments in electrical aircraft, biomedical devices, and autonomous automobiles. Hence, the development of novel polymer nanocomposite materials is critical to advancing the current state-of-the-art of structural material technologies to address the pressing performance demands. Aiming at expanding the existing material design space, we have investigated crosslinkable aromatic polyester matrix nanocomposites. Aromatic polyesters, in the thermosetting form, are a prospective high-performance/high-temperature polymer technology, which is on a par with conventional epoxy-derivative resins and high-performance engineering thermoplastics in the range of their potential applications. The aromatic matrix-based thermosetting nanocomposites manifest greatly enhanced physical properties enabled by a chemistry-favored robust interfacial covalent coupling mechanism developed during the in situ polymerization reaction with various nanofiller particle configurations. Here, we provide a summary review of our recent efforts in developing this novel polymer nanocomposite material system. We highlight the chemical strategy, fabrication approach, and processing techniques developed to obtain various nanocomposite representations for structural, electrical, optical, biomedical, and tribological applications. The unique characteristic features emerging in the nanocomposite morphologies, along with their physicochemical effects on the multifunctional macroscale properties, are demonstrated. This unique matrix configuration introduces superior performance elements to polymer nanocomposite applications towards designing advanced composite materials. |
Databáze: | OpenAIRE |
Externí odkaz: |