Motility switching and front-back synchronisation in polarized cells

Autor: Gissell Estrada-Rodriguez, Benoit Perthame
Přispěvatelé: Basque Center for Applied Mathematics (BCAM), Basque Center for Applied Mathematics, Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Fondation Sciences Mathématiques de Paris (FSMP), European Project: 740623,H2020 Pilier ERC,ADORA(2017), Modelling and Analysis for Medical and Biological Applications (MAMBA), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. EDP - Equacions en Derivades Parcials i Aplicacions, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Journal of Nonlinear Science
Journal of Nonlinear Science, 2022, 32 (3), pp.40. ⟨10.1007/s00332-022-09791-z⟩
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Journal of Nonlinear Science, 2022, 32, ⟨10.1007/s00332-022-09791-z⟩
ISSN: 0938-8974
1432-1467
DOI: 10.1007/s00332-022-09791-z⟩
Popis: International audience; The combination of protrusions and retractions in the movement of polarized cells leads to understand the effect of possible synchronisation between the two ends of the cells. This synchronisation, in turn, could lead to different dynamics such as normal and fractional diffusion. Departing from a stochastic single cell trajectory, where a "memory effect" induces persistent movement, we derive a kinetic-renewal system at the mesoscopic scale. We investigate various scenarios with different levels of complexity, where the two ends of the cell move either independently or with partial or full synchronisation. We study the relevant macroscopic limits where we obtain diffusion, drift-diffusion or fractional diffusion, depending on the initial system. This article clarifies the form of relevant macroscopic equations that describe the possible effects of synchronised movement in cells, and sheds light on the switching between normal and fractional diffusion.
Databáze: OpenAIRE