Influence of particle rolling and rotation on the shearing response of clean sand

Autor: Md. Mizanur Rahman, Hoang Bao Khoi Nguyen, Nick Barnett, M. R. Karim
Přispěvatelé: Barnett, Nick, Rahman, Md Mizanur, Karim, Md Rajibul, Nguyen, Hoang Bao Khoi, International Conference on Case Histories in Geotechnical Engineering (8th : 2019 : Philadelphia, Pa.) Philadelphia, Pennsylvania 24–27 March, 2019
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Popis: The discrete element method (DEM) has been extensively used to capture the micro-mechanical behavior of granular materials. To reduce computational expenses and operate within the capabilities of DEM software, many DEM studies adopt idealized rounded particle shapes, which do not truly represent the angularity and surface texture features of sand particles. When in contact, the idealized particles become highly prone to rolling, which can significantly influence the shear behavior observed in DEM. To counteract this manifestation of artificial behavior, contact models embedded with rolling resistance mechanics have been employed in DEM simulations. Here, the angular features of realistic soil particles can be indirectly considered through a rolling resistance coefficient. In this study, the effect of rolling resistance on both macro- and micro-mechanical responses of granular material is examined through undertaking conventional undrained and drained triaxial simulations. The undrained and drained dilative behavior was found to increase with rolling resistance. However, the coordination number (CN) did not reflect this macroscopically observed behavior. Further, the angular velocity of DEM particles was observed throughout undrained shearing, where it was found that particle rotation tendencies can also be associated with dilative or contractive behavior. Refereed/Peer-reviewed
Databáze: OpenAIRE