Resonances in a one-dimensional disordered chain

Autor: Boris Shapiro, Hervé Kunz
Rok vydání: 2006
Předmět:
Zdroj: Journal of Physics A: Mathematical and General. 39:10155-10160
ISSN: 1361-6447
0305-4470
DOI: 10.1088/0305-4470/39/32/s16
Popis: We study the average density of resonances, $$, in a semi-infinite disordered chain coupled to a perfect lead. The function $$ is defined in the complex energy plane and the distance $y$ from the real axes determines the resonance width. We concentrate on strong disorder and derive the asymptotic behavior of $$ in the limit of small $y$.
Comment: latex, 1 eps figure, 9 pages; v2 - final version, published in the JPhysA Special Issue Dedicated to the Physics of Non-Hermitian Operators
Databáze: OpenAIRE