Resonances in a one-dimensional disordered chain
Autor: | Boris Shapiro, Hervé Kunz |
---|---|
Rok vydání: | 2006 |
Předmět: |
Physics
Plane (geometry) Complex energy FOS: Physical sciences General Physics and Astronomy Resonance Statistical and Nonlinear Physics Disordered Systems and Neural Networks (cond-mat.dis-nn) Mathematical Physics (math-ph) Function (mathematics) Condensed Matter - Disordered Systems and Neural Networks Chain (algebraic topology) Quantum mechanics Limit (mathematics) Mathematical Physics |
Zdroj: | Journal of Physics A: Mathematical and General. 39:10155-10160 |
ISSN: | 1361-6447 0305-4470 |
DOI: | 10.1088/0305-4470/39/32/s16 |
Popis: | We study the average density of resonances, $$, in a semi-infinite disordered chain coupled to a perfect lead. The function $$ is defined in the complex energy plane and the distance $y$ from the real axes determines the resonance width. We concentrate on strong disorder and derive the asymptotic behavior of $$ in the limit of small $y$. Comment: latex, 1 eps figure, 9 pages; v2 - final version, published in the JPhysA Special Issue Dedicated to the Physics of Non-Hermitian Operators |
Databáze: | OpenAIRE |
Externí odkaz: |