Gaussian Multipole Model (GMM)

Autor: Dennis M. Elking, G. Andrés Cisneros, Jean-Philip Piquemal, Lee G. Pedersen, Thomas A. Darden
Přispěvatelé: National Institute of Environmental Health Sciences [Durham] (NIEHS-NIH), National Institutes of Health [Bethesda] (NIH), Wayne State University [Detroit], Laboratoire de chimie théorique (LCT), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2009
Předmět:
Zdroj: Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation, American Chemical Society, 2009, 6 (1), pp.190-202. ⟨10.1021/ct900348b⟩
Journal of Chemical Theory and Computation, 2009, 6 (1), pp.190-202. ⟨10.1021/ct900348b⟩
ISSN: 1549-9626
1549-9618
DOI: 10.1021/ct900348b
Popis: An electrostatic model based on charge density is proposed as a model for future force fields. The model is composed of a nucleus and a single Slater-type contracted Gaussian multipole charge density on each atom. The Gaussian multipoles are fit to the electrostatic potential (ESP) calculated at the B3LYP/6-31G* and HF/aug-cc-pVTZ levels of theory and tested by comparing electrostatic dimer energies, inter-molecular density overlap integrals, and permanent molecular multipole moments with their respective ab initio values. For the case of water, the atomic Gaussian multipole moments Q(lm) are shown to be a smooth function of internal geometry (bond length and bond angle), which can be approximated by a truncated linear Taylor series. In addition, results are given when the Gaussian multipole charge density is applied to a model for exchange-repulsion energy based on the inter-molecular density overlap.
Databáze: OpenAIRE