High-performance wide bandgap perovskite solar cells fabricated in ambient high-humidity conditions

Autor: Elvira Fortunato, Ugur Deneb Menda, Tomás Calmeiro, Hugo Águas, Guilherme Ribeiro, Manuel J. Mendes, Rodrigo Martins, Daniela Nunes
Přispěvatelé: DCM - Departamento de Ciência dos Materiais, CENIMAT-i3N - Centro de Investigação de Materiais (Lab. Associado I3N), UNINOVA-Instituto de Desenvolvimento de Novas Tecnologias
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Popis: proposal n1 952169 SFRH/BD/ 151095/2021 Lead-halide perovskite solar cells (PSCs) are currently the most promising emergent thin-film photovoltaic technology, having already reached power conversion efficiency (PCE) levels of state-of-the-art wafer-based silicon cells. The class of wide bandgap PSCs has also demonstrated high PCE values, thus becoming highly attractive for top sub-cells in tandem devices constructed with silicon or other types of bottom sub-cells. In this study, wide bandgap double-halide (Cs0.17FA0.83PbI3-xBrx) perovskite absorbers were developed with different bromine content, aiming to obtain bandgap values between 1.66 to 1.74 eV, by a glovebox-free (ambient) procedure. Low-cost inorganic materials, i.e. TiO2 and CuSCN, were used for the electron and hole transport layers, respectively. The 1.70 eV bandgap perovskite resulted in the highest reproducibility and stability (>80% initial PCE after 3500 hours) properties of the PSCs, remarkably attaining 16.4% PCE even with ambient and high humidity (∼70%) fabrication conditions. This journal is publishersversion published
Databáze: OpenAIRE