Magnetic‐Field‐Switchable Laser via Optical Pumping of Rubrene
Autor: | Markus Einzinger, Collin F. Perkinson, Moungi G. Bawendi, Joseph Finley, Marc A. Baldo |
---|---|
Rok vydání: | 2021 |
Předmět: |
Materials science
business.industry Mechanical Engineering Physics::Optics Laser Waveguide (optics) law.invention Magnetic field Optical pumping chemistry.chemical_compound Optical modulator Magnetic field imaging chemistry Mechanics of Materials law Optoelectronics General Materials Science business Rubrene Lasing threshold |
Zdroj: | Advanced Materials. 34:2103870 |
ISSN: | 1521-4095 0935-9648 |
DOI: | 10.1002/adma.202103870 |
Popis: | Volumetric optical imaging of magnetic fields is challenging with existing magneto-optical materials, motivating the search for dyes with strong magnetic field interactions, distinct emission spectra, and an ability to withstand high photon flux and incorporation within samples. Here, the magnetic field effect on singlet-exciton fission is exploited to demonstrate spatial imaging of magnetic fields in a thin film of rubrene. Doping rubrene with the high-quantum yield dye dibenzotetraphenylperiflanthene (DBP) is shown to enable optically pumped, slab waveguide lasing. This laser is magnetic-field-switchable: when operated just below the lasing threshold, application of a 0.4 T magnetic field switches the device between nonlasing and lasing modes, accompanied by an intensity modulation of +360%. This is thought to be the first demonstration of a magnetically switchable laser, as well as the largest magnetically induced change in emission brightness in a singlet-fission material to date. These results demonstrate that singlet-fission materials are promising materials for magnetic sensing applications and could inspire a new class of magneto-optical modulators. |
Databáze: | OpenAIRE |
Externí odkaz: |