Popis: |
Stereolithography (SLA) is a widely utilized rapid additive manufacturing process for prototypes and proof-of-concept models with high resolution. In order to create structurally sound components using SLA, reinforcement needs to be incorporated in the UV-based resins typically used. However, the introduction of reinforcement into vat-based SLA printers has had limited success due to a host of processing challenges including the creation of a homogeneous resin mixture and UV-inhibiting constituents. The effectiveness of using a dual curing system, consisting of a photo and thermal initiator, for the additive manufacturing of carbon fiber short-fiber composites via vat photopolymerization, was investigated. The necessary processing parameters were developed that resulted in successful printing and curing of composites at a 5% fiber volume. Manufacturing with reinforcements that have different densities from the resin creates separation issues, either suspending to the top or settling to the bottom. Following the approaches discussed in this chapter, an even distribution of short fibers was achieved throughout SLA printed samples using a modified commercial printer. Separation was overcome by inducing a continuous flow of reinforced liquid resin in the printer vat during printing. This flow field adaptation allows commercial SLA printers the ability to produce composite parts with different densities of the constituents utilized. |