Integrating user preference to similarity queries over medical images datasets
Autor: | Marcelo Ponciano-Silva, Fabíola S. F. Pereira, Richard Chbeir, Agma J. M. Traina, Caetano Traina, Mônica Ribeiro Porto Ferreira, Sandra de Amo |
---|---|
Přispěvatelé: | Chbeir, Richard, Data Bases and Images Group ( GBDI ), Universidade de São Paulo ( USP ), Faculdade de Computação, Universidade Federal de Uberlândia - UFU, Laboratoire Electronique, Informatique et Image ( Le2i ), Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS ), Data Bases and Images Group (GBDI), Universidade de São Paulo (USP), Laboratoire Electronique, Informatique et Image [UMR6306] (Le2i), Université de Bourgogne (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: |
[ INFO.INFO-IR ] Computer Science [cs]/Information Retrieval [cs.IR]
[INFO.INFO-WB] Computer Science [cs]/Web Computer science ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION [ INFO.INFO-WB ] Computer Science [cs]/Web [SCCO.COMP]Cognitive science/Computer science Computed tomography 02 engineering and technology Content-based image retrieval Semantics Image (mathematics) Similarity (network science) [SCCO.COMP] Cognitive science/Computer science 020204 information systems 0202 electrical engineering electronic engineering information engineering medicine [INFO.INFO-DB] Computer Science [cs]/Databases [cs.DB] Image retrieval [ INFO.INFO-MM ] Computer Science [cs]/Multimedia [cs.MM] [INFO.INFO-MM] Computer Science [cs]/Multimedia [cs.MM] Information retrieval [INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB] medicine.diagnostic_test [INFO.INFO-WB]Computer Science [cs]/Web [INFO.INFO-MM]Computer Science [cs]/Multimedia [cs.MM] 020207 software engineering Preference Important research [ INFO.INFO-DB ] Computer Science [cs]/Databases [cs.DB] [INFO.INFO-IR]Computer Science [cs]/Information Retrieval [cs.IR] [ SCCO.COMP ] Cognitive science/Computer science [INFO.INFO-IR] Computer Science [cs]/Information Retrieval [cs.IR] |
Zdroj: | CBMS '10 Proceedings of the 2010 IEEE 23rd International Symposium on Computer-Based Medical Systems CBMS '10 Proceedings of the 2010 IEEE 23rd International Symposium on Computer-Based Medical Systems, Oct 2010, Perth, Australia. pp.486-491, 〈http://dx.doi.org/10.1109/CBMS.2010.6042693〉 CBMS '10 Proceedings of the 2010 IEEE 23rd International Symposium on Computer-Based Medical Systems, Oct 2010, Perth, Australia. pp.486-491 CBMS |
DOI: | 10.1109/CBMS.2010.6042693〉 |
Popis: | International audience; Large amounts of images from medical exams are being stored in databases, so developing retrieval techniques is an important research problem. Retrieval based on the image visual content is usually better than using textual descriptions, as they seldom gives every nuances that the user may be interested in. Content-based image retrieval employs the similarity among images for retrieval. However, similarity is evaluated using numeric methods, and they often orders the images by similarity in a way rather distinct from the user's intention. In this paper, we propose a technique to allow expressing the user's preference over attributes associated to the images, so similarity queries can be refined by preference rules. Experiments performed over a dataset with computed tomography lung images shows that correctly expressing the user's preferences, the similarity query precision can increase from an average of 60% up to close to 100%, when enough interesting images exists in the database. |
Databáze: | OpenAIRE |
Externí odkaz: |