Plasmonic Surface of Metallic Gold and Silver Nanoparticles Induced Fluorescence Quenching of Meso-Terakis (4-Sulfonatophenyl) Porphyrin (TPPS) and Theoretical–Experimental Comparable

Autor: Ahmed A, Aboalhassan, Samy A, El-Daly, El-Zeiny M, Ebeid, Mahmoud A S, Sakr
Rok vydání: 2022
Předmět:
Zdroj: Journal of Fluorescence. 32:2257-2269
ISSN: 1573-4994
1053-0509
Popis: Colloidal metallic nanoparticles have attracted a lot of interest in the last two decades owing to their simple synthesis and fascinating optical properties. In this manuscript, a study of the effect of both gold nanoparticles (Au NPs) and silver nanoparticles (Ag NPs) on the fluorescence emission (FE) of TPPS has been investigated utilizing steady-state fluorescence spectroscopy and UV–Vis spectrophotometry. From the observed electronic absorption spectra, there is no evidence of the ground state interaction between metallic Au NPs or Ag NPs with TPPS. On the other side, the FE spectra of TPPS have been quenched by both Ag and Au NPs. Via applying quenching calculations, Ag NPs showed only traditional static fluorescence quenching of TPPS with linear Stern–Volmer (SV) plots. On the contrary, quenching of TPPS emission by Au NPs shows composed models. One model is the sphere of action static quenching model that prevails at high quencher concentrations leading to non-linear SV plots with positive deviation. However, at low Au NPs concentrations, traditional dynamic quenching occurs with linear SV plots. The quantum calculations for TPPS structure have been obtained using Gaussian 09 software: in which the TPPS optimized molecular structure was achieved using DFT/B3LYP/6-311G (d) in a gaseous state. Also, the calculated electronic absorption spectra for the same molecule in water as a solvent are obtained using TD/M06/6-311G + + (2d, 2p). Furthermore, the theoretical and experimental results comparable to UV–Vis spectra have been investigated.
Databáze: OpenAIRE