Role of Apolipoprotein E Receptors in Regulating the Differential in vivo Neurotrophic Effects of Apolipoprotein E

Autor: Margaret Mallory, Christine McGiffert, M. Alford, Isaac Veinbergs, Richard DeTeresa, Emily Van Uden, Robert A. Orlando, Eliezer Masliah
Rok vydání: 2001
Předmět:
Zdroj: Experimental Neurology. 170:15-26
ISSN: 0014-4886
DOI: 10.1006/exnr.2001.7684
Popis: Apolipoprotein E (apoE) is known to bind to at least five receptors, including the low-density lipoprotein (LDL) receptor-related protein (LRP), very low density LDL receptor (VLDL-R), LDL-R, apoE receptor 2 (apoER2), and megalin/gp330. In this context, the main objective of the present study was to better understand the contributions of LRP and LDL-R to the in vivo neurotrophic effects of apoE. For this purpose, apoE-deficient and receptor-associated protein (RAP)-deficient mice were infused with recombinant apoE3, RAP, or saline. Infusion of apoE3 into apoE-deficient mice resulted in amelioration of degenerative alterations of pyramidal neurons, but had no effect on somatostatin-producing interneurons. In contrast, infusion of apoE3 into RAP-deficient mice resulted in amelioration of degenerative alterations of somatostatin-producing interneurons. LRP and LDL-R levels were significantly reduced in RAP-deficient mice, but significantly increased in the apoE-deficient mice. In contrast, levels of apoE were reduced in the RAP-deficient mice compared to wildtype controls, suggesting that neurotrophic effects of apoE3 in the RAP-deficient mice were related to a combined deficit in endogenous apoE and selected apoE receptors. Furthermore, in apoE-deficient mice, infusion of apoE3 had a neurotrophic effect on somatostatin-producing interneurons only when combined with RAP, suggesting that increased expression of apoE receptors in apoE-deficient mice prevented apoE from rescuing somatostatin-producing neurons. This study supports the contention that some of the in vivo neurotrophic effects of apoE are mediated by LRP and LDL-R and that a critical balance between levels of apoE and its receptors is necessary for the differential neurotrophic effects to appear.
Databáze: OpenAIRE