Staggered discretizations, pressure correction schemes and all speed barotropic flows
Autor: | Jean-Claude Latché, Laura Gastaldo, Raphaèle Herbin, Céline Lapuerta, Walid Kheriji |
---|---|
Přispěvatelé: | Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Laboratoire d'Analyse, Topologie, Probabilités (LATP), Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études de l'Incendie et de développement de Méthodes pour la Simulation et les Incertitudes (DPAM/SEMIC/LIMSI), J. Fort, J. Furst, J Halama, R. Herbin, F. Hubert, Laboratoire d'études de l'Incendie et de développement de Méthodes pour la Simulation et les Incertitudes (IRSN/DPAM/SEMIC/LIMSI), Service Etude et Modélisation de l'Incendie, du Corium et du Confinement (IRSN/DPAM/SEMIC), Institut de Radioprotection et de Sûreté Nucléaire (IRSN)-Institut de Radioprotection et de Sûreté Nucléaire (IRSN) |
Jazyk: | angličtina |
Rok vydání: | 2011 |
Předmět: |
Staggered discretizations
Spacetime Barotropic Navier-Stokes 65M12 010103 numerical & computational mathematics 01 natural sciences Stability (probability) Euler equations 010101 applied mathematics Physics::Fluid Dynamics symbols.namesake Classical mechanics Mach number Pressure-correction method Barotropic fluid Compressibility symbols Applied mathematics Polygon mesh 0101 mathematics [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] Mathematics |
Zdroj: | FInite Volumes for Complex Applications VI Problems & Perspectives FVC6, International Symposium FVC6, International Symposium, Jun 2011, Prague, Czech Republic. pp.839-855, ⟨10.1007/978-3-642-20671-9_86⟩ Finite Volumes for Complex Applications VI Problems & Perspectives ISBN: 9783642206702 |
DOI: | 10.1007/978-3-642-20671-9_86⟩ |
Popis: | International audience; We present in this paper a class of schemes for the solution of the barotropic Navier- Stokes equations. These schemes work on general meshes, preserve the stability properties of the continuous problem, irrespectively of the space and time steps, and boil down, when the Mach number vanishes, to discretizations which are standard (and stable) in the incompressible framework. Finally, we show that they are able to capture solutions with shocks to the Euler equations |
Databáze: | OpenAIRE |
Externí odkaz: |