Genetically-encoded discovery of proteolytically stable bicyclic inhibitors for morphogen NODAL
Autor: | Lynne-Marie Postovit, Yu-Shan Lin, Raja Mukherjee, Vivian Triana, John J. Dwyer, Jeffrey Y.-K. Wong, Serhii H. Kharchenko, Mark Miskolzie, Dmitriy M. Volochnyuk, Olena Bilyk, Ratmir Derda, Anna Iampolska, Antoine Henninot, Jiayuan Miao |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Chemical Science |
ISSN: | 2041-6539 2041-6520 |
DOI: | 10.1039/d1sc01916c |
Popis: | In this manuscript, we developed a two-fold symmetric linchpin (TSL) that converts readily available phage-displayed peptides libraries made of 20 common amino acids to genetically-encoded libraries of bicyclic peptides displayed on phage. TSL combines an aldehyde-reactive group and two thiol-reactive groups; it bridges two side chains of cysteine [C] with an N-terminal aldehyde group derived from the N-terminal serine [S], yielding a novel bicyclic topology that lacks a free N-terminus. Phage display libraries of SX1CX2X3X4X5X6X7C sequences, where X is any amino acid but Cys, were converted to a library of bicyclic TSL-[S]X1[C]X2X3X4X5X6X7[C] peptides in 45 ± 15% yield. Using this library and protein morphogen NODAL as a target, we discovered bicyclic macrocycles that specifically antagonize NODAL-induced signaling in cancer cells. At a 10 μM concentration, two discovered bicyclic peptides completely suppressed NODAL-induced phosphorylation of SMAD2 in P19 embryonic carcinoma cells. The TSL-[S]Y[C]KRAHKN[C] bicycle inhibited NODAL-induced proliferation of NODAL-TYK-nu ovarian carcinoma cells with apparent IC50 of 1 μM. The same bicycle at 10 μM concentration did not affect the growth of the control TYK-nu cells. TSL-bicycles remained stable over the course of the 72 hour-long assays in a serum-rich cell-culture medium. We further observed general stability in mouse serum and in a mixture of proteases (Pronase™) for 21 diverse bicyclic macrocycles of different ring sizes, amino acid sequences, and cross-linker geometries. TSL-constrained peptides to expand the previously reported repertoire of phage-displayed bicyclic architectures formed by cross-linking Cys side chains. We anticipate that it will aid the discovery of proteolytically stable bicyclic inhibitors for a variety of protein targets. A two-fold symmetric linchpin (TSL) converts readily available phage-displayed disulfide peptide libraries to proteolytically stable bicyclic peptides. The bicyclic phage library was screened to discover an antagonist of NODAL morphogen. |
Databáze: | OpenAIRE |
Externí odkaz: |