k-Point semidefinite programming bounds for equiangular lines
Autor: | Fernando Mário de Oliveira Filho, Frank Vallentin, Fabrício Caluza Machado, David de Laat |
---|---|
Rok vydání: | 2021 |
Předmět: |
Semidefinite programming
Discrete mathematics Hierarchy (mathematics) Linear programming Euclidean space General Mathematics Numerical analysis 010102 general mathematics Metric Geometry (math.MG) 0102 computer and information sciences 90C22 52C99 01 natural sciences Mathematics - Metric Geometry Optimization and Control (math.OC) 010201 computation theory & mathematics FOS: Mathematics Point (geometry) 0101 mathematics Equiangular lines Mathematics - Optimization and Control Software Mathematics |
Zdroj: | Mathematical Programming, 194(1-2) |
ISSN: | 1436-4646 0025-5610 |
DOI: | 10.1007/s10107-021-01638-x |
Popis: | We give a hierarchy of $k$-point bounds extending the Delsarte-Goethals-Seidel linear programming $2$-point bound and the Bachoc-Vallentin semidefinite programming $3$-point bound for spherical codes. An optimized implementation of this hierarchy allows us to compute~$4$, $5$, and $6$-point bounds for the maximum number of equiangular lines in Euclidean space with a fixed common angle. 26 pages, 4 figures. New introduction and references updated |
Databáze: | OpenAIRE |
Externí odkaz: |