k-Point semidefinite programming bounds for equiangular lines

Autor: Fernando Mário de Oliveira Filho, Frank Vallentin, Fabrício Caluza Machado, David de Laat
Rok vydání: 2021
Předmět:
Zdroj: Mathematical Programming, 194(1-2)
ISSN: 1436-4646
0025-5610
DOI: 10.1007/s10107-021-01638-x
Popis: We give a hierarchy of $k$-point bounds extending the Delsarte-Goethals-Seidel linear programming $2$-point bound and the Bachoc-Vallentin semidefinite programming $3$-point bound for spherical codes. An optimized implementation of this hierarchy allows us to compute~$4$, $5$, and $6$-point bounds for the maximum number of equiangular lines in Euclidean space with a fixed common angle.
26 pages, 4 figures. New introduction and references updated
Databáze: OpenAIRE