Multidimensional van der Corput-Type Estimates Involving Mittag-Leffler Functions

Autor: Berikbol T. Torebek, Michael Ruzhansky
Rok vydání: 2020
Předmět:
Zdroj: FRACTIONAL CALCULUS AND APPLIED ANALYSIS
ISSN: 1314-2224
1311-0454
DOI: 10.1515/fca-2020-0082
Popis: The paper is devoted to study multidimensional van der Corput-type estimates for the intergrals involving Mittag-Leffler functions. The generalisation is that we replace the exponential function with the Mittag-Leffler-type function, to study multidimensional oscillatory integrals appearing in the analysis of time-fractional evolution equations. More specifically, we study two types of integrals with functions E-alpha,E-beta(i lambda phi(x)), x is an element of R-N and E-alpha,E-beta(i(alpha)lambda phi(x)), x is an element of R-N for the various range of alpha and beta. Several generalisations of the van der Corput-type estimates are proved. As an application of the above results, the Cauchy problem for the multidimensional time-fractional Klein-Gordon and time-fractional Schrodinger equations are considered.
Databáze: OpenAIRE