Enhanced nanofluidic transport in activated carbon nanoconduits

Autor: Theo Emmerich, Kalangi S. Vasu, Antoine Niguès, Ashok Keerthi, Boya Radha, Alessandro Siria, Lydéric Bocquet
Přispěvatelé: Micromegas : Nano-Fluidique, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), University of Manchester [Manchester], ANR-17-CE09-0046,NEPTUNE,Transport hors equilibre de fluides aux échelles nanométriques(2017), European Project: 785911,Shadoks, European Project: 637748,H2020,ERC-2014-STG,NanoSOFT(2015)
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Nature Materials
Nature Materials, 2022, 21 (6), pp.696-702. ⟨10.1038/s41563-022-01229-x⟩
ISSN: 1476-1122
1476-4660
Popis: Carbon has emerged as a unique material in nanofluidics, with reports of fast water transport, molecular ion separation and efficient osmotic energy conversion. Many of these phenomena still await proper rationalization due to the lack of fundamental understanding of nanoscale ionic transport, which can only be achieved in controlled environments. Here we develop the fabrication of 'activated' two-dimensional carbon nanochannels. Compared with nanoconduits with 'pristine' graphite walls, this enables the investigation of nanoscale ionic transport in great detail. We show that activated carbon nanochannels outperform pristine channels by orders of magnitude in terms of surface electrification, ionic conductance, streaming current and (epi-)osmotic currents. A detailed theoretical framework enables us to attribute the enhanced ionic transport across activated carbon nanochannels to an optimal combination of high surface charge and low friction. Furthermore, this demonstrates the unique potential of activated carbon for energy harvesting from salinity gradients with single-pore power density across activated carbon nanochannels, reaching hundreds of kilowatts per square metre, surpassing alternative nanomaterials.
Databáze: OpenAIRE