Enhanced nanofluidic transport in activated carbon nanoconduits
Autor: | Theo Emmerich, Kalangi S. Vasu, Antoine Niguès, Ashok Keerthi, Boya Radha, Alessandro Siria, Lydéric Bocquet |
---|---|
Přispěvatelé: | Micromegas : Nano-Fluidique, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), University of Manchester [Manchester], ANR-17-CE09-0046,NEPTUNE,Transport hors equilibre de fluides aux échelles nanométriques(2017), European Project: 785911,Shadoks, European Project: 637748,H2020,ERC-2014-STG,NanoSOFT(2015) |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
Theory and computation
[PHYS]Physics [physics] Ion Transport Two-dimensional Materials Mechanical Engineering [SDV]Life Sciences [q-bio] MESH: Graphite Biological Transport General Chemistry Condensed Matter Physics Nanostructures MESH: Charcoal MESH: Ion Transport MESH: Nanostructures Fluid dynamics Mechanics of Materials Charcoal MESH: Biological transport Graphite General Materials Science |
Zdroj: | Nature Materials Nature Materials, 2022, 21 (6), pp.696-702. ⟨10.1038/s41563-022-01229-x⟩ |
ISSN: | 1476-1122 1476-4660 |
Popis: | Carbon has emerged as a unique material in nanofluidics, with reports of fast water transport, molecular ion separation and efficient osmotic energy conversion. Many of these phenomena still await proper rationalization due to the lack of fundamental understanding of nanoscale ionic transport, which can only be achieved in controlled environments. Here we develop the fabrication of 'activated' two-dimensional carbon nanochannels. Compared with nanoconduits with 'pristine' graphite walls, this enables the investigation of nanoscale ionic transport in great detail. We show that activated carbon nanochannels outperform pristine channels by orders of magnitude in terms of surface electrification, ionic conductance, streaming current and (epi-)osmotic currents. A detailed theoretical framework enables us to attribute the enhanced ionic transport across activated carbon nanochannels to an optimal combination of high surface charge and low friction. Furthermore, this demonstrates the unique potential of activated carbon for energy harvesting from salinity gradients with single-pore power density across activated carbon nanochannels, reaching hundreds of kilowatts per square metre, surpassing alternative nanomaterials. |
Databáze: | OpenAIRE |
Externí odkaz: |