Establishment of CORONET, COVID-19 Risk in Oncology Evaluation Tool, to Identify Patients With Cancer at Low Versus High Risk of Severe Complications of COVID-19 Disease On Presentation to Hospital
Autor: | Lee, Rebecca J, Wysocki, Oskar, Zhou, Cong, Shotton, Rohan, Tivey, Ann, Lever, Louise, Woodcock, Joshua, Albiges, Laurence, Angelakas, Angelos, Arnold, Dirk, Aung, Theingi, Banfill, Kathryn, Baxter, Mark, Barlesi, Fabrice, Bayle, Arnaud, Besse, Benjamin, Bhogal, Talvinder, Boyce, Hayley, Britton, Fiona, Calles, Antonio, Castelo-Branco, Luis, Copson, Ellen, Croitoru, Adina E, Dani, Sourbha S, Dickens, Elena, Eastlake, Leonie, Fitzpatrick, Paul, Foulon, Stephanie, Frederiksen, Henrik, Frost, Hannah, Ganatra, Sarju, Gennatas, Spyridon, Glenthøj, Andreas, Gomes, Fabio, Graham, Donna M, Hague, Christina, Harrington, Kevin, Harrison, Michelle, Horsley, Laura, Hoskins, Richard, Huddar, Prerana, Hudson, Zoe, Jakobsen, Lasse H., Joharatnam-Hogan, Nalinie, Khan, Sam, Khan, Umair T, Khan, Khurum, Massard, Christophe, Maynard, Alec, McKenzie, Hayley, Michielin, Olivier, Mosenthal, Anne C, Obispo, Berta, Patel, Rushin, Pentheroudakis, George, Peters, Solange, Rieger-Christ, Kimberly, Robinson, Timothy, Rogado, Jacobo, Romano, Emanuela, Rowe, Michael, Sekacheva, Marina, Sheehan, Roseleen, Stevenson, Julie, Stockdale, Alexander, Thomas, Anne, Turtle, Lance, Viñal, David, Weaver, Jamie, Williams, Sophie, Wilson, Caroline, Palmieri, Carlo, Landers, Donal, Cooksley, Timothy, Dive, Caroline, Freitas, André, Armstrong, Anne C |
---|---|
Přispěvatelé: | Institut Gustave Roussy (IGR), Oncologie gynécologique, Département de médecine oncologique [Gustave Roussy], Institut Gustave Roussy (IGR)-Institut Gustave Roussy (IGR), Physikalisch-Technische Bundesanstalt [Braunschweig] (PTB), Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Université (AMU)-Institut Paoli-Calmettes, Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Cancer Research and Personalized Medicine - CARPEM [Paris], Hôpital Européen Georges Pompidou [APHP] (HEGP), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO)-Hôpital Cochin [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Genetics, University of Southampton, Centre de recherche en épidémiologie et santé des populations (CESP), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Paul Brousse-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay, Hematology, Odense University Hospital, Department of Clinical Microbiology [Rigshospitalet], Rigshospitalet [Copenhagen], Copenhagen University Hospital-Copenhagen University Hospital, University of Manchester [Manchester], Lausanne University Hospital, Department of Medical Oncology, Ioannina University Hospital, Immunité et cancer (U932), Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), University of Liverpool, Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, University of Manchester, Universidade Estadual de Campinas = University of Campinas (UNICAMP), Cancer Research UK Department of Medical Oncology, Christie Hospital NHS Foundation Trust |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Lee, R J, Wysocki, O, Zhou, C, Shotton, R, Tivey, A, Lever, L, Woodcock, J, Albiges, L, Angelakas, A, Arnold, D, Aung, T, Banfill, K, Baxter, M, Barlesi, F, Bayle, A, Besse, B, Bhogal, T, Boyce, H, Britton, F, Calles, A, Castelo-Branco, L, Copson, E, Croitoru, A E, Dani, S S, Dickens, E, Eastlake, L, Fitzpatrick, P, Foulon, S, Frederiksen, H, Frost, H, Ganatra, S, Gennatas, S, Glenthøj, A, Gomes, F, Graham, D M, Hague, C, Harrington, K, Harrison, M, Horsley, L, Hoskins, R, Huddar, P, Hudson, Z, Jakobsen, L H, Joharatnam-Hogan, N, Khan, S, Khan, U T, Khan, K, Massard, C, Maynard, A, McKenzie, H, Michielin, O, Mosenthal, A C, Obispo, B, Patel, R, Pentheroudakis, G, Peters, S, Rieger-Christ, K, Robinson, T, Rogado, J, Romano, E, Rowe, M, Sekacheva, M, Sheehan, R, Stevenson, J, Stockdale, A, Thomas, A, Turtle, L, Viñal, D, Weaver, J, Williams, S, Wilson, C, Palmieri, C, Landers, D, Cooksley, T, ESMO Co-Care, Dive, C, Freitas, A & Armstrong, A C 2022, ' Establishment of CORONET, COVID-19 Risk in Oncology Evaluation Tool, to Identify Patients With Cancer at Low Versus High Risk of Severe Complications of COVID-19 Disease On Presentation to Hospital ', JCO Clinical Cancer Informatics, vol. 6, e2100177 . https://doi.org/10.1200/CCI.21.00177 Lee, R J, Robinson, T, Wysocki, O, Zhou, C, Shotton, R & Tivey, A 2022, ' Establishment of CORONET, COVID-19 Risk in Oncology Evaluation Tool, to Identify Patients With Cancer at Low Versus High Risk of Severe Complications of COVID-19 Disease On Presentation to Hospital ', American Society of Clinical Oncology, vol. 6, e2100177, pp. 1-18 . https://doi.org/10.1200/CCI.21.00177 JCO Clinical Cancer Informatics JCO Clinical Cancer Informatics, 2022, 6, ⟨10.1200/CCI.21.00177⟩ |
ISSN: | 2473-4276 |
DOI: | 10.1200/CCI.21.00177 |
Popis: | PURPOSE Patients with cancer are at increased risk of severe COVID-19 disease, but have heterogeneous presentations and outcomes. Decision-making tools for hospital admission, severity prediction, and increased monitoring for early intervention are critical. We sought to identify features of COVID-19 disease in patients with cancer predicting severe disease and build a decision support online tool, COVID-19 Risk in Oncology Evaluation Tool (CORONET). METHODS Patients with active cancer (stage I-IV) and laboratory-confirmed COVID-19 disease presenting to hospitals worldwide were included. Discharge (within 24 hours), admission (≥ 24 hours inpatient), oxygen (O2) requirement, and death were combined in a 0-3 point severity scale. Association of features with outcomes were investigated using Lasso regression and Random Forest combined with Shapley Additive Explanations. The CORONET model was then examined in the entire cohort to build an online CORONET decision support tool. Admission and severe disease thresholds were established through pragmatically defined cost functions. Finally, the CORONET model was validated on an external cohort. RESULTS The model development data set comprised 920 patients, with median age 70 (range 5-99) years, 56% males, 44% females, and 81% solid versus 19% hematologic cancers. In derivation, Random Forest demonstrated superior performance over Lasso with lower mean squared error (0.801 v 0.807) and was selected for development. During validation (n = 282 patients), the performance of CORONET varied depending on the country cohort. CORONET cutoffs for admission and mortality of 1.0 and 2.3 were established. The CORONET decision support tool recommended admission for 95% of patients eventually requiring oxygen and 97% of those who died (94% and 98% in validation, respectively). The specificity for mortality prediction was 92% and 83% in derivation and validation, respectively. Shapley Additive Explanations revealed that National Early Warning Score 2, C-reactive protein, and albumin were the most important features contributing to COVID-19 severity prediction in patients with cancer at time of hospital presentation. CONCLUSION CORONET, a decision support tool validated in health care systems worldwide, can aid admission decisions and predict COVID-19 severity in patients with cancer. |
Databáze: | OpenAIRE |
Externí odkaz: |