Efficient estimation of linear functionals of principal components

Autor: Vladimir Koltchinskii, Matthias Löffler, Richard Nickl
Rok vydání: 2020
Předmět:
Zdroj: Ann. Statist. 48, no. 1 (2020), 464-490
ISSN: 0090-5364
Popis: We study principal component analysis (PCA) for mean zero i.i.d. Gaussian observations $X_1,\dots, X_n$ in a separable Hilbert space $\mathbb{H}$ with unknown covariance operator $\Sigma.$ The complexity of the problem is characterized by its effective rank ${\bf r}(\Sigma):= \frac{{\rm tr}(\Sigma)}{\|\Sigma\|},$ where ${\rm tr}(\Sigma)$ denotes the trace of $\Sigma$ and $\|\Sigma\|$ denotes its operator norm. We develop a method of bias reduction in the problem of estimation of linear functionals of eigenvectors of $\Sigma.$ Under the assumption that ${\bf r}(\Sigma)=o(n),$ we establish the asymptotic normality and asymptotic properties of the risk of the resulting estimators and prove matching minimax lower bounds, showing their semi-parametric optimality.
Comment: 48 pages, to appear in Annals of Statistics
Databáze: OpenAIRE