Interactions of Graphene Oxide Nanomaterials with Natural Organic Matter and Metal Oxide Surfaces
Autor: | Nikhita D. Mansukhani, Indranil Chowdhury, Mark C. Hersam, Matthew C. Duch, Dermont Bouchard |
---|---|
Rok vydání: | 2014 |
Předmět: |
Alginates
Surface Properties Inorganic chemistry Oxide Ionic bonding complex mixtures Nanomaterials law.invention Metal chemistry.chemical_compound Rivers law Aluminum Oxide Environmental Chemistry Benzopyrans Humic Substances Chemistry Graphene Osmolar Concentration General Chemistry Quartz crystal microbalance Quartz Crystal Microbalance Techniques Silicon Dioxide Nanostructures Models Chemical visual_art visual_art.visual_art_medium Graphite Water Pollutants Chemical Macromolecule |
Zdroj: | Environmental Science & Technology. 48:9382-9390 |
ISSN: | 1520-5851 0013-936X |
DOI: | 10.1021/es5020828 |
Popis: | Interactions of graphene oxide (GO) nanomaterials with natural organic matter (NOM) and metal oxide surfaces were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Three different types of NOM were studied: Suwannee River humic and fulvic acids (SRHA and SRFA) and alginate. Aluminum oxide surface was used as a model metal oxide surface. Deposition trends show that GO has the highest attachment on alginate, followed by SRFA, SRHA, and aluminum oxide surfaces, and that GO displayed higher interactions with all investigated surfaces than with silica. Deposition and release behavior of GO on aluminum oxide surface is very similar to positively charged poly-L-lysine-coated surface. Higher interactions of GO with NOM-coated surfaces are attributed to the hydroxyl, epoxy, and carboxyl functional groups of GO; higher deposition on alginate-coated surfaces is attributed to the rougher surface created by the extended conformation of the larger alginate macromolecules. Both ionic strength (IS) and ion valence (Na(+) vs Ca(2+)) had notable impact on interactions of GO with different environmental surfaces. Due to charge screening, increased IS resulted in greater deposition for NOM-coated surfaces. Release behavior of deposited GO varied significantly between different environmental surfaces. All surfaces showed significant release of deposited GO upon introduction of low IS water, indicating that deposition of GO on these surfaces is reversible. Release of GO from NOM-coated surfaces decreased with IS due to charge screening. Release rates of deposited GO from alginate-coated surface were significantly lower than from SRHA and SRFA-coated surfaces due to trapping of GO within the rough surface of the alginate layer. |
Databáze: | OpenAIRE |
Externí odkaz: |