Using generative adversarial networks (GAN) to simulate central-place foraging trajectories
Autor: | Amédée Roy, Ronan Fablet, Sophie Lanco Bertrand |
---|---|
Přispěvatelé: | MARine Biodiversity Exploitation and Conservation (UMR MARBEC), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Equipe Observations Signal & Environnement (Lab-STICC_OSE), Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC), École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT), Département Mathematical and Electrical Engineering (IMT Atlantique - MEE), IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Océan Dynamique Observations Analyse (ODYSSEY), Université de Bretagne Occidentale - UFR Sciences et Techniques (UBO UFR ST), Université de Brest (UBO)-Université de Brest (UBO)-Université de Rennes (UR)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-IMT Atlantique (IMT Atlantique) |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
Hidden Markov model
seabird Ecological Modeling [SDE.MCG]Environmental Sciences/Global Changes deep learning Deep learning Seabird movement model Animal telemetry [SDE.BE]Environmental Sciences/Biodiversity and Ecology hidden Markov model Movement model Ecology Evolution Behavior and Systematics animal telemetry |
Zdroj: | Methods in Ecology and Evolution Methods in Ecology and Evolution, 2022, 13 (6), pp.1275-1287. ⟨10.1111/2041-210X.13853⟩ Methods In Ecology And Evolution (2041-210X) (Wiley), 2022-06, Vol. 13, N. 6, P. 1275-1287 |
ISSN: | 2041-210X |
DOI: | 10.1111/2041-210X.13853⟩ |
Popis: | \ₑprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/2041-210X.13853; International audience; Miniature electronic devices have recently enabled ecologists to document relatively large amounts of animal trajectories. Modelling such trajectories may contribute to explaining the mechanisms underlying observed behaviours and to clarifying ecological processes at the scale of the population by simulating multiple trajectories. Existing approaches to animal movement modelling have mainly addressed the first objective, and are often limited when used for simulation purposes. Individual-based models generally rely on ad hoc formulation and their empirical parametrization lacks generability, while random walks based on mathematically sound statistical inference typically consist of first-order Markovian models calibrated at the local scale which may lead to overly simplistic description and simulation of animal trajectories. We investigate a recent deep learning tool—generative adversarial networks (GAN)—to simulate animal trajectories. GANs consist of a pair of deep neural networks that aim to capture the data distribution of some experimental dataset. They enable the generation of new instances of data that share statistical properties. This study aims at identifying relevant deep network architectures to simulate central-place foraging trajectories, as well as at evaluating GANs drawbacks and benefits over classical methods, such as state-switching hidden Markov models (HMM). We demonstrate the outstanding ability of deep convolutional GANs to simulate and to capture medium- to large-scale properties of seabird foraging trajectories. GAN-derived synthetic trajectories reproduced the Fourier spectral density of observed trajectories better than those simulated using HMMs. However, unlike HMMs, GANs do not adequately capture local-scale descriptive statistics, such as step speed distributions. GANs provide a new likelihood-free approach to calibrate complex stochastic processes and thus open new research avenues for animal movement modelling. We discuss the potential uses of GANs in movement ecology and future developments to better capture local-scale features. In this context, embedding HMM-based priors in GAN schemes appears as a promising research direction. |
Databáze: | OpenAIRE |
Externí odkaz: |