On Power-Law Distributed Balls in Bins and its Applications to View Size Estimation

Autor: Ioannis Atsonios, Olivier Beaumont, Yusik Kim, Nicolas Hanusse
Přispěvatelé: Algorithmics for computationally intensive applications over wide scale distributed platforms (CEPAGE), Université Sciences et Technologies - Bordeaux 1 (UB)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS), Machine Learning and Optimisation (TAO), Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1-Inria Bordeaux - Sud-Ouest, Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB), Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Paris-Sud - Paris 11 (UP11)-Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Zdroj: ISAAC
ISAAC, Dec 2011, Yokohama, Japan
Algorithms and Computation ISBN: 9783642255908
Popis: International audience; The view size estimation plays an important role in query optimization. It has been observed that many data follow a power law distribution. In this paper, we consider the balls in bins problem where we place balls into $N$ bins when the bin selection probabilities follow a power law distribution. As a generalization to the coupon collector's problem, we address the problem of determining the expected number of balls that need to be thrown in order to have at least one ball in each of the $N$ bins. We prove that $\Theta(\frac{N^\alpha \ln N}{c_N^{\alpha}})$ balls are needed to achieve this where $\alpha$ is the parameter of the power law distribution and $c_N^{\alpha}=\frac{\alpha-1}{\alpha-N^{\alpha-1}}$ for $\alpha \neq 1$ and $c_N^{\alpha}=\frac{1}{\ln N}$ for $\alpha=1$. Next, when fixing the number of balls that are thrown to $T$, we provide closed form upper and lower bounds on the expected number of bins that have at least one occupant. For $n$ large and $\alpha>1$, we prove that our bounds are tight up to a constant factor of $\left(\frac{\alpha}{\alpha-1}\right)^{1-\frac{1}{\alpha}} \leq e^{1/e} \simeq 1.4$.
Databáze: OpenAIRE