Interpolation theory for Sobolev functions with partially vanishing trace on irregular open sets
Autor: | Moritz Egert, Sebastian Bechtel |
---|---|
Přispěvatelé: | Technische Universität Darmstadt (TU Darmstadt), Laboratoire de Mathématiques d'Orsay (LM-Orsay), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
Trace (linear algebra) General Mathematics Open set Boundary (topology) 02 engineering and technology [MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA] 01 natural sciences Measure (mathematics) Mathematics - Analysis of PDEs 2010 MSC: Primary: 46B70. Secondary: 46E35 0202 electrical engineering electronic engineering information engineering Classical Analysis and ODEs (math.CA) FOS: Mathematics [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] 0101 mathematics Mathematics Porous sets Interpolation of Banach spaces Smoothness (probability theory) Applied Mathematics 010102 general mathematics Primary: 46B70. Secondary: 46E35 Hardy's inequality 020206 networking & telecommunications Lipschitz continuity traces and extensions of Sobolev functions Sobolev space Mathematics - Classical Analysis and ODEs measure density conditions (fractional) Sobolev spaces Analysis Interpolation theory Analysis of PDEs (math.AP) |
Zdroj: | Journal of Fourier Analysis and Applications Journal of Fourier Analysis and Applications, Springer Verlag, 2019, 25 (5), pp.2733-2781. ⟨10.1007/s00041-019-09681-1⟩ |
ISSN: | 1069-5869 1531-5851 |
Popis: | A full interpolation theory for Sobolev functions with smoothness between 0 and 1 and vanishing trace on a part of the boundary of an open set is established. Geometric assumptions are of mostly measure theoretic nature and reach beyond Lipschitz regular domains. Previous results were limited to regular geometric configurations or Hilbertian Sobolev spaces. Sets with porous boundary and their characteristic multipliers on smoothness spaces play a major role in the arguments. Comment: Upload of the published version including the correction of some further typos |
Databáze: | OpenAIRE |
Externí odkaz: |