Retrieve the evaporation duct height by least-squares support vector machine algorithm
Autor: | H. Essen, Joerg Foerster, Remi Douvenot, Vincent Fabbro, Joseph Saillard, H.-H. Fuchs, Christophe Bourlier |
---|---|
Přispěvatelé: | Institut d'Électronique et des Technologies du numéRique (IETR), Nantes Université (NU)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), ONERA - The French Aerospace Lab [Toulouse], ONERA, Université de Nantes (UN)-Université de Rennes 1 (UR1), Université de Nantes (UN)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2009 |
Předmět: |
Radar cross-section
010504 meteorology & atmospheric sciences Atmospheric pressure Wave propagation Inverse transform sampling 020206 networking & telecommunications 02 engineering and technology Atmospheric model 01 natural sciences law.invention [SPI.ELEC]Engineering Sciences [physics]/Electromagnetism Transmission (telecommunications) law Least squares support vector machine 0202 electrical engineering electronic engineering information engineering General Earth and Planetary Sciences 14. Life underwater Radar Algorithm Geology ComputingMilieux_MISCELLANEOUS 0105 earth and related environmental sciences Remote sensing |
Zdroj: | Journal of applied remote sensing Journal of applied remote sensing, Bellingham, WA : SPIE, 2009, pp.033503. ⟨10.1117/1.3081546⟩ Journal of applied remote sensing, 2009, pp.033503. ⟨10.1117/1.3081546⟩ |
ISSN: | 1931-3195 |
DOI: | 10.1117/1.3081546⟩ |
Popis: | The detection and tracking of naval targets, including low Radar Cross Section (RCS) objects like inflatable boats or sea skimming missiles requires a thorough knowledge of the propagation properties of the maritime boundary layer. Models are in existence, which allow a prediction of the propagation factor using the parabolic equation algorithm. As a necessary input, the refractive index has to be known. This index, however, is strongly influenced by the actual atmospheric conditions, characterized mainly by temperature, humidity and air pressure. An approach is initiated to retrieve the vertical profile of the refractive index from the propagation factor measured on an onboard target. The method is based on the LS-SVM (Least-Squares Support Vector Machines) theory. The inversion method is here used to determine refractive index from data measured during the VAMPIRA campaign (Validation Measurement for Propagation in the Infrared and RAdar) conducted as a multinational approach over a transmission path across the Baltic Sea. As a propagation factor has been measured on two reference reflectors mounted onboard a naval vessel at different heights, the inversion method can be tested on both heights. The paper describes the experimental campaign and validates the LS-SVM inversion method for refractivity from propagation factor on simple measured data. |
Databáze: | OpenAIRE |
Externí odkaz: |