Tracing gestation and lactation in free ranging gray whales using the stable isotopic composition of epidermis layers
Autor: | Brian N. Popp, Michelle Gelippi, Javier Caraveo-Patiño, Marco F. W. Gauger |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Male
Composite Particles Physiology Maternal Health Marine and Aquatic Sciences Social Sciences Endocrinology Isotopes Reproductive Physiology Pregnancy Lactation Medicine and Health Sciences Psychology Fractionation Skin Mammals Carbon Isotopes Multidisciplinary δ13C Animal Behavior Stable isotope ratio Physics Eukaryota Obstetrics and Gynecology Isotopes of nitrogen Body Fluids Separation Processes medicine.anatomical_structure Milk Vertebrates Physical Sciences Gestation Medicine Female Anatomy Integumentary System Research Article Atoms Science Gray Whales Marine Biology Biology Animal Sexual Behavior Research and Analysis Methods Beverages Animal science medicine Animals Marine Mammals Particle Physics Nutrition Behavior Endocrine Physiology Nitrogen Isotopes Organisms Whales Biology and Life Sciences δ15N Diet Baleen Amniotes Earth Sciences Birth Women's Health Epidermis Zoology |
Zdroj: | PLoS ONE, Vol 15, Iss 10, p e0240171 (2020) PLoS ONE |
ISSN: | 1932-6203 |
Popis: | The isotopic composition of baleen whales' epidermis structural layers can give information about dietary change over time. This study investigated if epidermis layers integrated isotopic values that record physiological changes from gestation to lactation. Epidermis tissues (n = 43) were collected from free ranging lactating female gray whale and calves during the beginning of three breeding seasons. Modelling of δ13C and δ15N values show intra- and inter-individual differences based on epidermal layers, age class and year of sampling. The isotopic composition of mother-calf pairs is correlated, and the estimates of the maximum mother-to-calf isotopic difference was ~1.4‰ for δ13C and between 1 and 1.5‰ for δ15N values. Change in δ15N values among epidermal layers in calves was associated with the transition from fetus to consumption of maternal milk. It is here proposed when lactation influences calf epidermis, δ15N values decrease consistently from the outermost to the innermost layer. However, if a calf was born only few days before collection, epidermis integrates more variable δ15N patterns because gestation still affects the isotopic composition of the layers. The possibility of calculating mother-to-calf nitrogen isotope fractionation, and the regularity of changes between calf layer δ15N values, allowed results of an isotopic clock model to predict the age of each calf when sampled with its mother. This model has the potential to be a straightforward method to estimate the beginning of lactation, therefore calf birth date when direct observations are not feasible. The non-lethal remote collection of epidermis appears to be an effective tool for the study of the physiology of reproduction of baleen whales. The parallel study of the three epidermal structural layers highlighted the importance of considering the unique mother-calf pair physiological status at the time of sampling time when stable isotope results are interpreted. |
Databáze: | OpenAIRE |
Externí odkaz: |