Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines
Autor: | Anja Konietzny, Jasper Grendel, Alan Kadek, Michael Bucher, Yuhao Han, Nathalie Hertrich, Dick H W Dekkers, Jeroen A A Demmers, Kay Grünewald, Charlotte Uetrecht, Marina Mikhaylova |
---|---|
Přispěvatelé: | Biochemistry |
Rok vydání: | 2021 |
Předmět: |
musculoskeletal diseases
Dendritic Spines Myosin Type V macromolecular substances myosin Endoplasmic Reticulum Hippocampus General Biochemistry Genetics and Molecular Biology Mass Spectrometry 03 medical and health sciences 0302 clinical medicine Calmodulin synaps ddc:570 spine apparatus Animals Humans Protein Interaction Domains and Motifs Rats Wistar Molecular Biology 030304 developmental biology Mice Knockout 0303 health sciences General Immunology and Microbiology General Neuroscience Calcium-Binding Proteins Endoplasmic Reticulum Smooth musculoskeletal system caldendrin Actins endoplasmic reticulum 540 Chemie und zugeordnete Wissenschaften HEK293 Cells ddc:540 030217 neurology & neurosurgery |
Zdroj: | EMBO Journal, 41(4):e106523. Wiley-Blackwell The EMBO journal 41(4), e106523 (2022). doi:10.15252/embj.2020106523 |
ISSN: | 1460-2075 0261-4189 |
DOI: | 10.15252/embj.2020106523 |
Popis: | The EMBO journal 41(4), e106523 (2022). doi:10.15252/embj.2020106523 Excitatory synapses of principal hippocampal neurons are frequently located on dendritic spines. The dynamic strengthening or weakening of individual inputs results in structural and molecular diversity of dendritic spines. Active spines with large calcium ion (Ca$^{2+}$) transients are frequently invaded by a single protrusion from the endoplasmic reticulum (ER), which is dynamically transported into spines via the actin-based motor myosin V. An increase in synaptic strength correlates with stable anchoring of the ER, followed by the formation of an organelle referred to as the spine apparatus. Here, we show that myosin V binds the Ca$^{2+}$ sensor caldendrin, a brain-specific homolog of the well-known myosin V interactor calmodulin. While calmodulin is an essential activator of myosin V motor function, we found that caldendrin acts as an inhibitor of processive myosin V movement. In mouse and rat hippocampal neurons, caldendrin regulates spine apparatus localization to a subset of dendritic spines through a myosin V-dependent pathway. We propose that caldendrin transforms myosin into a stationary F-actin tether that enables the localization of ER tubules and formation of the spine apparatus in dendritic spines. Published by Wiley, Hoboken, NJ [u.a.] |
Databáze: | OpenAIRE |
Externí odkaz: |