Low-Cost Nanostructured Coating of Anodic Aluminium Oxide Synthesized in Sulphuric Acid as Electrolyte
Autor: | Alicia Esther Ares, Florencia Alejandra Bruera, Gustavo Raul Kramer, Maria Laura Vera |
---|---|
Rok vydání: | 2021 |
Předmět: |
morphological parameters
Materials science Anodizing Nanoporous Oxide chemistry.chemical_element Surfaces and Interfaces Electrolyte nanostructured anodic aluminium oxide sulphuric acid Electrochemistry statistics regression AA1050 Surfaces Coatings and Films chemistry.chemical_compound chemistry Chemical engineering lcsh:TA1-2040 Aluminium Materials Chemistry Aluminium oxide lcsh:Engineering (General). Civil engineering (General) Porosity |
Zdroj: | Coatings Volume 11 Issue 3 Coatings, Vol 11, Iss 309, p 309 (2021) |
ISSN: | 2079-6412 |
DOI: | 10.3390/coatings11030309 |
Popis: | The anodic oxidation of aluminium is an electrochemical technique that allows obtaining nanostructures with easily adjustable morphology depending on the synthesis variables, for its application in medicine, engineering, biotechnology, electronics, etc. In this work, low-cost aluminium oxide nanostructured films were synthesized and morphologically characterized using two anodization steps in sulphuric acid, varying the concentration and temperature of the electrolyte and anodization voltage. The order of the porous matrix, pore diameter, interpore distance, pore density, thickness, and porosity were measured and statistically analyzed. The results showed that under the proposed conditions it is possible to synthesize low-cost nanoporous aluminium oxide films, with a short-range ordering, being the best ordering conditions 10 °C and 0.3 M sulphuric acid at 20 V and 5 °C and 2 M sulphuric acid at 15 V. Furthermore, it was determined that the pore diameter and the interpore distance vary proportionally with the voltage, that the pore density decreases with the voltage and increases with the concentration of the electrolyte, and that the thickness of the oxide film increases with electrolyte concentration, temperature, and anodization voltage. |
Databáze: | OpenAIRE |
Externí odkaz: |