Cotransplantation of human umbilical cord-derived mesenchymal stem cells and umbilical cord blood-derived CD34+ cells in a rabbit model of myocardial infarction
Autor: | Qunxing Ma, Meng Ning, Yuelong Hou, Tong Li, Yue Zhao |
---|---|
Rok vydání: | 2013 |
Předmět: |
Angiogenesis
Cellular differentiation Clinical Biochemistry Myocardial Infarction CD34 Antigens CD34 Mesenchymal Stem Cell Transplantation Peripheral blood mononuclear cell Umbilical cord Ventricular Function Left Neovascularization Andrology medicine Animals Humans Molecular Biology Cells Cultured business.industry Myocardium Mesenchymal stem cell Mesenchymal Stem Cells Cell Biology General Medicine Coronary Vessels medicine.anatomical_structure Immunology Female Cord Blood Stem Cell Transplantation Rabbits medicine.symptom Stem cell business |
Zdroj: | Molecular and Cellular Biochemistry. 387:91-100 |
ISSN: | 1573-4919 0300-8177 |
DOI: | 10.1007/s11010-013-1874-5 |
Popis: | The objective of the study is to investigate the effect of hypoxic preconditioning on the immunomodulatory properties of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and the effect of cotransplantation of hUC-MSCs and human umbilical cord blood (hUCB)-derived CD34(+) cells in a rabbit model of myocardial infarction. hUC-MSCs with or without hypoxic preconditioning by cobalt chloride were plated in a 24-well plate, and then cocultured with hUCB-CD34(+) cells and PBMCs for 96 h at 37 °C in a 5% CO₂ incubator. For the negative control, hUC-MSCs were omitted. The groups were divided as follows: A1 = HP-MSCs + hUCB-CD34(+) cells + PBMC, A2 = hUC-MSCs + hUCB-CD34(+) cells + PBMC, Negative Control = hUCB-CD34(+) cells + PBMC. Culture supernatants of each group were collected, and the IL-10 and IFN-γ levels were measured by ELISA. A rabbit model of MI was established using a modified Fujita method. The animals were then randomized into three groups and received intramyocardial injections of 0.4 ml of PBS alone (n = 8, PBS group), hUC-MSCs in PBS (n = 8, hUC-MSCs group), or hUC-MSCs + CD34(+) cells in PBS (n = 8, Cotrans group), at four points in the infarct border zone. Echocardiography was performed at baseline, 4 weeks after MI induction, and 4 weeks after cell transplantation, respectively. Stem cell differentiation and neovascularization in the infracted area were characterized for the presence of cardiac Troponin I (cTnI) and CD31 by immunohistochemical staining, and the extent of myocardial fibrosis was evaluated by hematoxylin and eosin (HE) and Masson's trichrome. IFN-γ was 27.00 ± 1.11, 14.20 ± 0.81, and 7.22 ± 0.14 pg/ml, and IL-10 was 31.68 ± 3.08, 61.42 ± 1.08, and 85.85 ± 1.80 pg/ml for the Control, A1 and A2 groups, respectively, which indicated that hUCB-CD34(+) cells induced immune reaction of peripheral blood mononuclear cells, whereas both hUC-MSCs and HP-MSCs showed an immunosuppressive effect, which, however, was attenuated by hypoxic preconditioning. The Cotrans group had less collagen deposition in the infarcted myocardium and better heart function than the hUC-MSCs or PBS group. The presence of cTnI-positive cells and CD31-positive tubular structures indicated the differentiation of stem cells into cardiomyocytes and neovascularization. The microvessel density was 12.19 ± 3.05/HP for the hUC-MSCs group and 31.63 ± 2.45/HP for the Cotrans group, respectively (P0.01). As a conclusion, both hUC-MSCs and HP-MSCs have an immunosuppressive effect on lymphocytes, which, however, can be attenuated by hypoxic preconditioning. Cotransplantation of hUC-MSCs and hUCB-CD34(+) cells can improve heart function and decrease collagen deposition in post-MI rabbits. Thus, a combined regimen of hUC-MSCs and hUCB-CD34(+) cells would be more desirable than either cells administered alone. This is most likely due to the increase of cardiomyocytes and enhanced angiogenesis in the infarcted myocardium. |
Databáze: | OpenAIRE |
Externí odkaz: |