Coronary Angiography-Derived Diastolic Pressure Ratio

Autor: Yi Tieci, Jianping Li, Yundi Feng, Fan Yang, Bo Zheng, Yuxi Li, Yong Huo, Yanjun Gong, Long Zhang, Tao Hong, Zhao-ping Liu, Yunlong Huo
Rok vydání: 2020
Předmět:
Zdroj: Frontiers in Bioengineering and Biotechnology
Frontiers in Bioengineering and Biotechnology, Vol 8 (2020)
ISSN: 2296-4185
Popis: Aims: Based on the aortic pressure waveform, a specially-designed computational fluid dynamic (CFD) method was proposed to determine coronary angiography-derived diastolic pressure ratio (caDPR) without using invasive pressure wire. The aim of the study is to retrospectively assess diagnostic performance of the caDPR in the catheterization laboratory, based on a previous multicenter trial for online assessment of coronary angiography-derived FFR (caFFR). Methods and results: Patients with diagnosis of stable or unstable angina pectoris were enrolled in six centers. Wire-derived FFR was measured in coronary arteries with 30-90% diameter stenosis. Offline caDPR was assessed in blinded fashion against wire-derived FFR at an independent core laboratory. A total of 330 patients who met the inclusion/exclusion criteria were enrolled from June 26 to December 18, 2018. Offline computed caDPR and wire-derived FFR were compared in 328 interrogated vessels. The caDPR with a cutoff value of 0.89 shows diagnostic accuracy of 87.7%, sensitivity of 89.5%, specificity of 86.8%, and AUC of 0.940 against the wire-derived FFR with a cutoff value of 0.80. Conclusions: Using wired-based FFR as the standard reference, there is good diagnostic performance of the novel-CFD-design caDPR. Hence, caDPR could enhance the hemodynamic assessment of coronary lesions.
Databáze: OpenAIRE