Integrity basis of polyconvex invariants for modeling hyperelastic orthotropic materials — Application to the mechanical response of passive ventricular myocardium
Autor: | François Peyraut, Frédéric Holweck, Zhi-Qiang Feng, Renye Cai |
---|---|
Přispěvatelé: | School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University, Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), Université de Technologie de Belfort-Montbeliard (UTBM)-Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), School of Mechanics and Engineering, Southwest Jiaotong University (SWJTU), Laboratoire de Mécanique et d'Energétique d'Evry (LMEE), Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay, Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] (LICB), Université de Bourgogne (UB)-Université de Technologie de Belfort-Montbeliard (UTBM)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Work (thermodynamics)
Polyconvexity Computer science Physics::Medical Physics 0206 medical engineering Context (language use) 02 engineering and technology Orthotropic material Strain energy Nonlinear mechanics Large deformation Basis (linear algebra) Applied Mathematics Mechanical Engineering Mathematical analysis Orthotropic hyperelastic materials Strain energy density function [SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph] 021001 nanoscience & nanotechnology 020601 biomedical engineering Exponential function Passive ventricular myocardium Mechanics of Materials Hyperelastic material Strain energy function (SEF) 0210 nano-technology |
Zdroj: | International Journal of Non-Linear Mechanics International Journal of Non-Linear Mechanics, 2021, 133, pp.103713. ⟨10.1016/j.ijnonlinmec.2021.103713⟩ International Journal of Non-Linear Mechanics, Elsevier, 2021, 133, pp.103713. ⟨10.1016/j.ijnonlinmec.2021.103713⟩ |
ISSN: | 0020-7462 |
DOI: | 10.1016/j.ijnonlinmec.2021.103713⟩ |
Popis: | International audience; The present paper proposes a new Strain Energy Function (SEF) for modeling incompressible orthotropic hyperelastic materials with a specific application to the mechanical response of passive ventricular myocardium. In order to build our SEF, we have followed a classical strategy based on exponential functions, but we have chosen to work with polyconvex invariants instead of the standard ones. Actually, in the context of hyperelastic problems, the polyconvexity of the strain energy density is considered as a prerequisite for ensuring the existence of solutions. By selecting a set of polyconvex invariants, we demonstrate that our model can predict the experimental data with 6 different shear modes applied to passive ventricular myocardium. |
Databáze: | OpenAIRE |
Externí odkaz: |