Symbolic regression of generative network models

Autor: Camille Roth, Telmo Menezes
Přispěvatelé: Roth, Camille, SYSCOMM : Systèmes complexes et modélisation mathématique - Simulations de parenté : modélisation de la dynamique matrimoniale et mnémonique dans les réseaux de parenté - - SimPa2009 - ANR-09-SYSC-0013 - SYSCOMM - VALID, Contenus et Interactions - Politique des algorithmes - - Algopol2012 - ANR-12-CORD-0018 - CONTINT - VALID, Centre d'Analyse et de Mathématique sociales (CAMS), École des hautes études en sciences sociales (EHESS)-Centre National de la Recherche Scientifique (CNRS), Centre Marc Bloch (CMB), Ministère de l'Europe et des Affaires étrangères (MEAE)-Bundesministerium für Bildung und Forschung-Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)-Centre National de la Recherche Scientifique (CNRS), ANR-12-CORD-0018,Algopol,Politique des algorithmes(2012), ANR-09-SYSC-0013,SimPa,Simulations de parenté : modélisation de la dynamique matrimoniale et mnémonique dans les réseaux de parenté(2009)
Rok vydání: 2014
Předmět:
FOS: Computer and information sciences
Empirical data
Theoretical computer science
[SHS.SOCIO] Humanities and Social Sciences/Sociology
Computer science
02 engineering and technology
01 natural sciences
Machine Learning
[NLIN.NLIN-AO] Nonlinear Sciences [physics]/Adaptation and Self-Organizing Systems [nlin.AO]
Evolutionary Computing
Software
[STAT.ML]Statistics [stat]/Machine Learning [stat.ML]
[SHS.STAT] Humanities and Social Sciences/Methods and statistics
0202 electrical engineering
electronic engineering
information engineering

Scientific Data
Network model
[SHS.SOCIO]Humanities and Social Sciences/Sociology
[SHS.STAT]Humanities and Social Sciences/Methods and statistics
Multidisciplinary
Applied Mathematics
Computer Science - Neural and Evolutionary Computing
Computer Science - Social and Information Networks
020201 artificial intelligence & image processing
Physics - Physics and Society
[SCCO.COMP]Cognitive science/Computer science
FOS: Physical sciences
Physics and Society (physics.soc-ph)
Article
Evolutionary computation
Artificial Intelligence
[SCCO.COMP] Cognitive science/Computer science
0103 physical sciences
Animals
Computer Simulation
Neural and Evolutionary Computing (cs.NE)
Caenorhabditis elegans
[NLIN.NLIN-AO]Nonlinear Sciences [physics]/Adaptation and Self-Organizing Systems [nlin.AO]
010306 general physics
Social and Information Networks (cs.SI)
Social network
business.industry
Genetic Algorithms
Models
Theoretical

[STAT.ML] Statistics [stat]/Machine Learning [stat.ML]
Nerve Net
Networks
Symbolic regression
business
Generative grammar
Zdroj: Scientific Reports
Scientific Reports, Nature Publishing Group, 2014, 4, pp.6284
Scientific Reports, Nature Publishing Group, 2014, 4 (6284), pp.7
ISSN: 2045-2322
DOI: 10.1038/srep06284
Popis: Networks are a powerful abstraction with applicability to a variety of scientific fields. Models explaining their morphology and growth processes permit a wide range of phenomena to be more systematically analysed and understood. At the same time, creating such models is often challenging and requires insights that may be counter-intuitive. Yet there currently exists no general method to arrive at better models. We have developed an approach to automatically detect realistic decentralised network growth models from empirical data, employing a machine learning technique inspired by natural selection and defining a unified formalism to describe such models as computer programs. As the proposed method is completely general and does not assume any pre-existing models, it can be applied “out of the box” to any given network. To validate our approach empirically, we systematically rediscover pre-defined growth laws underlying several canonical network generation models and credible laws for diverse real-world networks. We were able to find programs that are simple enough to lead to an actual understanding of the mechanisms proposed, namely for a simple brain and a social network.
Databáze: OpenAIRE