Carbon ionization at gigabar pressures: An ab initio perspective on astrophysical high-density plasmas
Autor: | Gerd Röpke, B. B. L. Witte, Ronald Redmer, Mandy Bethkenhagen, Siegfried Glenzer, Dominik Kraus, Maximilian Schörner, Tilo Döppner, Philip A. Sterne |
---|---|
Přispěvatelé: | Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Work (thermodynamics)
Materials science Ab initio chemistry.chemical_element High density FOS: Physical sciences Plasma Computational Physics (physics.comp-ph) Physics - Plasma Physics Plasma Physics (physics.plasm-ph) chemistry Astrophysics - Solar and Stellar Astrophysics Electrical resistivity and conductivity [SDU]Sciences of the Universe [physics] Ionization Physics::Atomic and Molecular Clusters Atomic physics Carbon Physics - Computational Physics Solar and Stellar Astrophysics (astro-ph.SR) |
Zdroj: | Physical Review Research Physical Review Research, 2020, 2, ⟨10.1103/PhysRevResearch.2.023260⟩ |
ISSN: | 2643-1564 |
Popis: | A realistic description of partially-ionized matter in extreme thermodynamic states is critical to model the interior and evolution of the multiplicity of high-density astrophysical objects. Current predictions of its essential property, the ionization degree, rely widely on analytical approximations that have been challenged recently by a series of experiments. Here, we propose a novel ab initio approach to calculate the ionization degree directly from the dynamic electrical conductivity using the Thomas-Reiche-Kuhn sum rule. This Density Functional Theory framework captures genuinely the condensed matter nature and quantum effects typical for strongly-correlated plasmas. We demonstrate this new capability for carbon and hydrocarbon, which most notably serve as ablator materials in inertial confinement fusion experiments aiming at recreating stellar conditions. We find a significantly higher carbon ionization degree than predicted by commonly used models, yet validating the qualitative behavior of the average atom model Purgatorio. Additionally, we find the carbon ionization state to remain unchanged in the environment of fully-ionized hydrogen. Our results will not only serve as benchmark for traditional models, but more importantly provide an experimentally accessible quantity in the form of the electrical conductivity. accepted for publication in Physical Review Research |
Databáze: | OpenAIRE |
Externí odkaz: |