Well-posedness of a diffusive gyro-kinetic model

Autor: Maxime Hauray, Anne Nouri
Přispěvatelé: Laboratoire d'Analyse, Topologie, Probabilités (LATP), Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique (CNRS), ANR-07-BLAN-0178,EGYPT,Etude GYrocinétique des Plasmas Turbulents(2007), ANR: EGYPT,EGYPT
Rok vydání: 2011
Předmět:
Zdroj: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2011, 28 (4), pp.529-550. ⟨10.1016/j.anihpc.2011.03.002⟩
Annales de l'Institut Henri Poincaré (C) Non Linear Analysis
Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, Elsevier, 2011, 28 (4), pp.529-550. ⟨10.1016/j.anihpc.2011.03.002⟩
ISSN: 0294-1449
1873-1430
DOI: 10.1016/j.anihpc.2011.03.002
Popis: We study a finite Larmor radius model used to describe the ions distribution function in the core of a tokamak plasma, that consists in a gyro-kinetic transport equation coupled with an electro-neutrality equation. Since the last equation does not provide enough regularity on the electric potential, we introduce a simple linear collision operator adapted to the finite Larmor radius approximation. We next study the two-dimensional dynamics in the direction perpendicular to the magnetic field. Thanks to the smoothing effects of the collision and the gyro-average operators, we prove the global existence of solutions, as well as short time uniqueness and stability.
Databáze: OpenAIRE