On distance in total variation between image measures

Autor: Youri Davydov
Rok vydání: 2017
Předmět:
Zdroj: Statistics & Probability Letters. 129:393-400
ISSN: 0167-7152
DOI: 10.1016/j.spl.2017.06.022
Popis: We are interested in the estimation of the distance in total variation $$ \Delta := \|P_{f(X)} - P_{g(X)}\|_{\mathrm var} $$ between distributions of random variables $f(X)$ and $g(X)$ in terms of proximity of $f$ and $g.$ We propose a simple general method of estimating $\Delta$. For Gaussian and trigonometrical polynomials it gives an asymptotically optimal result (when the degree tends to $\infty$).
Comment: 13 pages
Databáze: OpenAIRE