An Objectivation of Visual Perception using Virtual Reality, Brain-Computer Interfaces and Deep Learning

Autor: Stock, Simon
Přispěvatelé: Stork, Wilhelm, Auffarth, Gerd U.
Jazyk: angličtina
Rok vydání: 2022
Předmět:
DOI: 10.5445/ir/1000142511/v3
Popis: Der Sehsinn ermöglicht eine detailgenaue Wahrnehmung der Welt. Virtual Reality (VR), Brain-Computer Interfaces (BCI) und Deep Learning sind neue Technologien, die uns hierbei neue Möglichkeiten für die Erforschung der visuellen Wahrnehmung geben. In dieser Dissertation wird ein System für die Augenheilkunde vorgestellt, das Augenkrankheiten in VR simulieren kann und durch Hinzufügen von BCI und KI eine objektive Diagnostik von Gesichtsfeldausfällen ermöglicht. Für ein besseres Verständnis der Arbeit wird das menschliche Sehen mit Modellen der Computer Vision verglichen und basierend hierauf ein allgemeines vierstufiges Seh-Modell eingeführt. Innerhalb des Modells werden Schnittstellen zwischen der biologisch-realen und der technologisch-virtuellen Welt evaluiert. Besteht heutzutage bei einem Patienten der Verdacht auf einen Gesichtsfeldausfall (Skotom), so werden ophthalmologische Geräte wie das Perimeter zur Ausmessung des Gesichtsfeldes eingesetzt. Das dem Stand der Technik entsprechende Verfahren liegt dem subjektiven Feedback des Patienten zugrunde. Entsprechend können Lerneffekte beim Patienten das Ergebnis nicht unwesentlich beeinflussen. Um diese Problematiken zu umgehen, wurde in dieser Dissertation ein objektives Perimetriesystem auf Basis von VR, BCI und Deep Learning erfolgreich implementiert und evaluiert. Ein weiterer Vorteil des neuen Systems ist die Möglichkeit zur Einsetzung bei Menschen mit Schwerbehinderung, Kindern und Tieren. Der Lösungsansatz dieser Dissertation ist die Simulation (pathologischer/eingeschränkter) Sehzustände. Hierfür wurde der Zustand von Glaukompatienten mit Hilfe von VR-Technologien virtuell abgebildet. Die resultierende VR-Anwendung bildet individuelle Glaukomverläufe immersiv in VR ab. Evaluiert wurde die Simulationsumgebung mit medizinischem Fachpersonal und Glaukompatienten an der Augenklinik des Universitätsklinikums Heidelberg (\textit{N}=22). Hierbei wurde gezeigt, dass VR eine geeignete Maßnahme zur Simulation von Sehbedingungen ist und zum Verständnis des Patientenzustandes einen Beitrag leisten kann. Ausgehend von dieser Simulationsumgebung wurden weitere Software- und Hardwaremodule hinzugefügt. Erzeugte stationäre visuelle Stimuli wurden hierbei eingesetzt, um (simulierte) Sehfehler durch ein Elektroenzephalographie (EEG)-basiertes BCI zu erkennen. Das System wurde in einer internationalen Laborstudie (\textit{N}=15) in Zusammenarbeit mit dem Massachusetts Institute of Technology getestet und validiert. Die gesammelten Daten deuten darauf hin, dass das System für die Klassifizierung des zentralen (88\% Genauigkeit pro 2,5 Sekunden EEG-Daten) und peripheren Gesichtsfeldes (63-81\% Genauigkeit) geeignet ist, während es für periphere Positionen aufgrund der Technologiesensitivität zu Einschränkungen (50-57\% Genauigkeit) kommt. Entsprechend sollte das System für Skotome eingesetzt werden, sofern der Sehausfall das zentrale Sehen oder ganze Quadranten des Gesichtsfelds betrifft. Aufgrund der Notwendigkeit für einen besseren ambulanten EEG-Messaufbau werden modulare, plattformübergreifende Softwareimplementierungen und neuartige, zum Patent angemeldete, EEG-Elektroden vorgestellt. Die neuartigen Elektroden bieten ein besseres Signal-zu-Rausch-Verhältnis als herkömmliche Trockenelektroden (\SI{1,35}{dB} Verbesserung), sind schnell anzulegen, wiederverwendbar und hinterlassen kaum bis keine unerwünschten Rückstände im Haar des Patienten. Diese Dissertation legt den Grundstein für ein VR, BCI und KI-basiertes Perimetrie-Messsystem, welches insbesondere im ambulanten Setting oder bei Patienten mit Einschränkungen zum Einsatz kommen könnte.
Databáze: OpenAIRE