On Two Laplacian Matrices for Skew Gain Graphs

Autor: K. A. Germina, Roshni T Roy, K. Shahul Hameed
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Electronic Journal of Graph Theory and Applications, Vol 9, Iss 1, Pp 125-135 (2021)
Popis: Let $G=(V,\overrightarrow{E})$ be a graph with some prescribed orientation for the edges and $\Gamma$ be an arbitrary group. If $f\in \mathrm{Inv}(\Gamma)$ be an anti-involution then the skew gain graph $\Phi_f=(G,\Gamma,\varphi,f)$ is such that the skew gain function $\varphi:\overrightarrow{E}\rightarrow \Gamma$ satisfies $\varphi(\overrightarrow{vu})=f(\varphi(\overrightarrow{uv}))$. In this paper, we study two different types, Laplacian and $g$-Laplacian matrices for a skew gain graph where the skew gains are taken from the multiplicative group $F^\times$ of a field $F$ of characteristic zero. Defining incidence matrix, we also prove the matrix tree theorem for skew gain graphs in the case of the $g$-Laplacian matrix.
Comment: 15 pages
Databáze: OpenAIRE