Organic neuromorphic electronics for sensorimotor integration and learning in robotics
Autor: | Imke Krauhausen, Dimitrios A. Koutsouras, Armantas Melianas, Scott T. Keene, Katharina Lieberth, Hadrien Ledanseur, Rajendar Sheelamanthula, Alexander Giovannitti, Fabrizio Torricelli, Iain Mcculloch, Paul W. M. Blom, Alberto Salleo, Yoeri van de Burgt, Paschalis Gkoupidenis |
---|---|
Přispěvatelé: | Group Van de Burgt, ICMS Core, EAISI Foundational, Krauhausen, Imke [0000-0001-5633-389X], Koutsouras, Dimitrios A [0000-0002-9456-9630], Melianas, Armantas [0000-0002-3443-0987], Keene, Scott T [0000-0002-6635-670X], Lieberth, Katharina [0000-0001-6160-7162], Sheelamanthula, Rajendar [0000-0001-5223-9580], Giovannitti, Alexander [0000-0003-4778-3615], Torricelli, Fabrizio [0000-0002-7932-0677], Mcculloch, Iain [0000-0002-6340-7217], Blom, Paul WM [0000-0002-6474-9497], Salleo, Alberto [0000-0002-7448-9123], van de Burgt, Yoeri [0000-0003-3472-0148], Gkoupidenis, Paschalis [0000-0002-0139-0851], Apollo - University of Cambridge Repository |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Science Advances Science Advances, 7(50):eabl5068. American Association for the Advancement of Science (AAAS) |
ISSN: | 2375-2548 |
Popis: | Description A robot learns to follow a path to exit a maze through sensorimotor learning that is induced by an organic neuromorphic circuit. In living organisms, sensory and motor processes are distributed, locally merged, and capable of forming dynamic sensorimotor associations. We introduce a simple and efficient organic neuromorphic circuit for local sensorimotor merging and processing on a robot that is placed in a maze. While the robot is exposed to external environmental stimuli, visuomotor associations are formed on the adaptable neuromorphic circuit. With this on-chip sensorimotor integration, the robot learns to follow a path to the exit of a maze, while being guided by visually indicated paths. The ease of processability of organic neuromorphic electronics and their unconventional form factors, in combination with education-purpose robotics, showcase a promising approach of an affordable, versatile, and readily accessible platform for exploring, designing, and evaluating behavioral intelligence through decentralized sensorimotor integration. |
Databáze: | OpenAIRE |
Externí odkaz: |