A data reduction method based on the J-integral to obtain the interlaminar fracture toughness in a mode II end-loaded split (ELS) test
Autor: | Josep Costa, C. Sarrado, Jordi Renart, A. Rodríguez-Bellido, M. Pérez-Galmés |
---|---|
Přispěvatelé: | Ministerio de Economía y Competitividad (Espanya) |
Rok vydání: | 2016 |
Předmět: |
Work (thermodynamics)
Materials science Assaigs de materials 02 engineering and technology Measure (mathematics) Composite materials -- Delamination Mecànica de fractura Fracture toughness 0203 mechanical engineering Fracture mechanics Composite material business.industry Delamination Mode (statistics) Materials -- Testing Structural engineering 021001 nanoscience & nanotechnology 020303 mechanical engineering & transports Mechanics of Materials Ceramics and Composites Fracture (geology) Adhesive 0210 nano-technology business Materials compostos -- Deslaminatge Data reduction |
Zdroj: | © Composites Part A: Applied Science and Manufacturing, 2016, vol. 90, p. 670-677 Articles publicats (D-EMCI) DUGiDocs – Universitat de Girona instname |
Popis: | Various difficulties arise in the data reduction of the end-loaded split (ELS) test. On one hand, a small Fracture Process Zone (FPZ) at the crack front is assumed in the existing mode II end-loaded split test methodologies based on Linear Elastic Fracture Mechanics (LEFM). However, mode II fracture has been reported to involve large FPZ and a fuzzy crack tip. Furthermore, the ELS test, is usually affected by geometrical non-linearities. This work proposes a closed-form solution based on the J-integral to determine the interlaminar fracture toughness in an ELS test. This solution avoids the need to measure the crack length, and is applicable when a large FPZ is present, as occurs in adhesive bonded joints between CFRP. In addition, because the ELS test involves large vertical deflections, a correction of the formulation for large displacements has been implemented. This new methodology has been compared to other methods available in the literature based on LEFM by means of an experimental campaign of delamination tests using unidirectional CFRP specimens in order to make a first validation of the method The authors would like to acknowledge the support of the Spanish government though the Ministerio de Economía y Competitividad under contract TRA2015-71491-R |
Databáze: | OpenAIRE |
Externí odkaz: |