Linear bounds for the normal covering number of the symmetric and alternating groups

Autor: Daniela Bubboloni, Pablo Spiga, Cheryl E. Praeger
Přispěvatelé: Bubboloni, D, Praeger, C, Spiga, P
Rok vydání: 2019
Předmět:
Zdroj: Monatshefte für Mathematik. 191:229-247
ISSN: 1436-5081
0026-9255
DOI: 10.1007/s00605-019-01287-5
Popis: The normal covering number $\gamma(G)$ of a finite, non-cyclic group $G$ is the minimum number of proper subgroups such that each element of $G$ lies in some conjugate of one of these subgroups. We find lower bounds linear in $n$ for $\gamma(S_n)$, when $n$ is even, and for $\gamma(A_n)$, when $n$ is odd.
Databáze: OpenAIRE