Linear bounds for the normal covering number of the symmetric and alternating groups
Autor: | Daniela Bubboloni, Pablo Spiga, Cheryl E. Praeger |
---|---|
Přispěvatelé: | Bubboloni, D, Praeger, C, Spiga, P |
Rok vydání: | 2019 |
Předmět: |
Conjugacy classe
010505 oceanography Group (mathematics) Astrophysics::High Energy Astrophysical Phenomena General Mathematics 010102 general mathematics Group Theory (math.GR) Covering number 01 natural sciences Normal covering Combinatorics Mathematics::Group Theory 20B30 20F05 FOS: Mathematics 0101 mathematics Element (category theory) Symmetric group Mathematics - Group Theory Partition 0105 earth and related environmental sciences Mathematics Conjugate |
Zdroj: | Monatshefte für Mathematik. 191:229-247 |
ISSN: | 1436-5081 0026-9255 |
DOI: | 10.1007/s00605-019-01287-5 |
Popis: | The normal covering number $\gamma(G)$ of a finite, non-cyclic group $G$ is the minimum number of proper subgroups such that each element of $G$ lies in some conjugate of one of these subgroups. We find lower bounds linear in $n$ for $\gamma(S_n)$, when $n$ is even, and for $\gamma(A_n)$, when $n$ is odd. |
Databáze: | OpenAIRE |
Externí odkaz: |