Intrinsic linking and knotting of graphs in arbitrary 3-manifolds
Autor: | Erica Flapan, Don Lawrence, Blake Mellor, Hugh Howards |
---|---|
Rok vydání: | 2005 |
Předmět: |
3–manifolds
Geometric Topology (math.GT) Mathematics::Geometric Topology Graph Combinatorics symbols.namesake Mathematics - Geometric Topology 05C10 57M25 If and only if Poincaré conjecture intrinsically linked graphs 57M25 symbols FOS: Mathematics Mathematics - Combinatorics Geometry and Topology Combinatorics (math.CO) intrinsically knotted graphs Mathematics 05C10 |
Zdroj: | Algebr. Geom. Topol. 6, no. 3 (2006), 1025-1035 |
DOI: | 10.48550/arxiv.math/0508004 |
Popis: | We prove that a graph is intrinsically linked in an arbitrary 3-manifold M if and only if it is intrinsically linked in S^3. Also, assuming the Poincare Conjecture, we prove that a graph is intrinsically knotted in M if and only if it is intrinsically knotted in S^3. Comment: This is the version published by Algebraic & Geometric Topology on 9 August 2006 |
Databáze: | OpenAIRE |
Externí odkaz: |