On the rationality of Poincaré series of Gorenstein algebras via Macaulay's correspondence

Autor: Gianfranco Casnati, Roberto Notari, Joachim Jelisiejew
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Rocky Mountain J. Math. 46, no. 2 (2016), 413-433
Popis: Let $A$ be a local Artinian Gorenstein algebra with maximal ideal $\fM $, \[P_A(z) := \sum _{p=0}^{\infty } (\tor _p^A(k,k))z^p \] its Poicar\'{e} series. We prove that $P_A(z)$ is rational if either $\dim _k({\fM ^2/\fM ^3}) \leq 4 $ and $ \dim _k(A) \leq 16,$ or there exist $m\leq 4$ and $c$ such that the Hilbert function $H_A(n)$ of $A$ is equal to $ m$ for $n\in [2,c]$ and equal to $1$ for $n =c+1$. The results are obtained due to a decomposition of the apolar ideal $\Ann (F)$ when $F=G+H$ and $G$ and $H$ belong to polynomial rings in different variables.
Databáze: OpenAIRE