Approximation of non-archimedean Lyapunov exponents and applications over global fields

Autor: Gabriel Vigny, Yûsuke Okuyama, Thomas Gauthier
Přispěvatelé: Centre de Mathématiques Laurent Schwartz (CMLS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), NASA Goddard Space Flight Center (GSFC), Kyoto Institute of Technology, Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352 (LAMFA), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Transactions of the American Mathematical Society
Transactions of the American Mathematical Society, American Mathematical Society, 2020, 373 (12), pp.8963-9011. ⟨10.1090/tran/8232⟩
ISSN: 0002-9947
DOI: 10.1090/tran/8232⟩
Popis: Let $K$ be an algebraically closed field of characteristic 0 that is complete with respect to a non-archimedean absolute value. We establish a locally uniform approximation formula of the Lyapunov exponent of a rational map $f$ of $\mathbb{P}^1$ of degree $d>1$ over $K$, in terms of the multipliers of $n$-periodic points of $f$, with an explicit control in terms of $n$, $f$ and $K$. As an immediate consequence, we obtain an estimate for the blow-up of the Lyapunov exponent near a pole in one-dimensional families of rational maps over $K$. Combined with our former archimedean version, this non-archimedean quantitative approximation allows us to show: - a quantified version of Silverman's and Ingram's recent comparison between the critical height and any ample height on the moduli space $\mathcal{M}_d(\bar{\mathbb{Q}})$, - two improvements of McMullen's finiteness of the multiplier maps: reduction to multipliers of cycles of exact given period and an effective bound from below on the period, - a characterization of non-affine isotrivial rational maps defined over the function field $\mathbb{C}(X)$ of a normal projective variety $X$ in terms of the growth of the degree of the multipliers.
Some typos fixed
Databáze: OpenAIRE