Completeness of Graphical Languages for Mixed State Quantum Mechanics
Autor: | Titouan Carette, Emmanuel Jeandel, Simon Perdrix, Renaud Vilmart |
---|---|
Přispěvatelé: | Designing the Future of Computational Models (MOCQUA), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Formal Methods (LORIA - FM), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Quantum Computation Structures (QuaCS), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Méthodes Formelles (LMF), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Laboratoire Méthodes Formelles (LMF), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), ANR-17-CE25-0009,SoftQPRO,Solutions logicielles pour l'optimisation des programmes et ressources quantiques(2017), ANR-17-CE24-0035,VanQuTe,Validation des technologies quantiques émergentes(2017), European Project: NEASQC |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | ACM Transactions on Quantum Computing ACM Transactions on Quantum Computing, 2021, 2 (4), pp.1-28. ⟨10.1145/3464693⟩ |
ISSN: | 2643-6817 2643-6809 |
Popis: | There exist several graphical languages for quantum information processing, like quantum circuits, ZX-calculus, ZW-calculus, and so on. Each of these languages forms a †-symmetric monoidal category (†-SMC) and comes with an interpretation functor to the †-SMC of finite-dimensional Hilbert spaces. In recent years, one of the main achievements of the categorical approach to quantum mechanics has been to provide several equational theories for most of these graphical languages, making them complete for various fragments of pure quantum mechanics. We address the question of how to extend these languages beyond pure quantum mechanics to reason about mixed states and general quantum operations, i.e., completely positive maps. Intuitively, such an extension relies on the axiomatisation of a discard map that allows one to get rid of a quantum system, an operation that is not allowed in pure quantum mechanics. We introduce a new construction, the discard construction , which transforms any †-symmetric monoidal category into a symmetric monoidal category equipped with a discard map. Roughly speaking this construction consists in making any isometry causal. Using this construction, we provide an extension for several graphical languages that we prove to be complete for general quantum operations. However, this construction fails for some fringe cases like Clifford+T quantum mechanics, as the category does not have enough isometries. |
Databáze: | OpenAIRE |
Externí odkaz: |