A Data Driven Approach to Audiovisual Speech Mapping

Autor: Amir Hussain, Peter Derleth, Jon Barker, Roger Watt, Andrew Abel, Ricard Marxer, Bill Whitmer
Přispěvatelé: Liu, Cheng-Lin, Hussain, Amir, Luo, Bin, Tan, Kay Chen, Zeng, Yi, Zhang, Zhaoxiang
Rok vydání: 2016
Předmět:
Zdroj: Advances in Brain Inspired Cognitive Systems ISBN: 9783319496849
BICS
ISSN: 0302-9743
DOI: 10.1007/978-3-319-49685-6_30
Popis: The concept of using visual information as part of audio speech processing has been of significant recent interest. This paper presents a data driven approach that considers estimating audio speech acoustics using only temporal visual information without considering linguistic features such as phonemes and visemes. Audio (log filterbank) and visual (2D-DCT) features are extracted, and various configurations of MLP and datasets are used to identify optimal results, showing that given a sequence of prior visual frames an equivalent reasonably accurate audio frame estimation can be mapped.
Databáze: OpenAIRE