Retinoic acid maintains human skeletal muscle progenitor cells in an immature state

Autor: Cécile Notarnicola, Marine Blaquière, Brendan Evano, Shahragim Tajbakhsh, Jacques Mercier, Gérald Hugon, Anne Bonnieu, Marina El Haddad, Nour El Khatib, Barbara Vernus, Gilles Carnac
Přispěvatelé: Physiologie & médecine expérimentale du Cœur et des Muscles [U 1046] (PhyMedExp), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Département de Biologie du Développement et Cellules souches - Department of Developmental and Stem Cell Biology, Institut Pasteur [Paris], Biologie Moléculaire du Développement, Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur [Paris], Dynamique Musculaire et Métabolisme (DMEM), Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM), Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), This work was supported by CNRS, INSERM, and by Montpellier University Grants. M. El Haddad was supported by a Ph.D. studentship from the Centre Hospitalier Regional Universitaire of Montpellier and the University of Montpellier., We thank Dr. Pierre Germain (Centre de Biochimie Structurale, CNRS UMR5048/INSERM U1054, Montpellier, France) for his helpful discussions., Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA), Service de physiologie clinique, Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)-Hôpital Arnaud de Villeneuve
Jazyk: angličtina
Rok vydání: 2017
Předmět:
0301 basic medicine
Male
MESH: Signal Transduction
Receptors
Retinoic Acid

Retinoic acid
PAX3
MyoD
Muscle Development
chemistry.chemical_compound
Mice
MESH: Gene Expression Regulation
Developmental

Myocyte
MESH: Animals
MESH: Cell Differentiation
Cells
Cultured

rar
satellite cells
MESH: Receptors
Retinoic Acid/metabolism

myoblasts
Gene Expression Regulation
Developmental

Cell Differentiation
differentiation
MESH: Tretinoin/metabolism
MESH: MyoD Protein/metabolism
Cell biology
medicine.anatomical_structure
MESH: MyoD Protein/genetics
Molecular Medicine
RNA Interference
C2C12
Signal Transduction
MESH: Cells
Cultured

Adult
MESH: Muscle Development
MESH: RNA Interference
Tretinoin
Biology
myod
03 medical and health sciences
Cellular and Molecular Neuroscience
medicine
[SDV.MHEP.PHY]Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO]
Animals
Humans
MESH: Myoblasts/cytology
Progenitor cell
Molecular Biology
MESH: Mice
MyoD Protein
Pharmacology
MESH: Humans
MESH: Myoblasts/metabolism
Skeletal muscle
MESH: Adult
Cell Biology
MESH: Male
030104 developmental biology
Nuclear receptor
chemistry
Immunology
[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
Zdroj: Cellular and Molecular Life Sciences
Cellular and Molecular Life Sciences, Springer Verlag, 2017, 74 (10), pp.1923-1936. ⟨10.1007/s00018-016-2445-1⟩
Cellular and Molecular Life Sciences, 2017, 74 (10), pp.1923-1936. ⟨10.1007/s00018-016-2445-1⟩
ISSN: 1420-682X
1420-9071
DOI: 10.1007/s00018-016-2445-1⟩
Popis: Muscle satellite cells are resistant to cytotoxic agents, and they express several genes that confer resistance to stress, thus allowing efficient dystrophic muscle regeneration after transplantation. However, once they are activated, this capacity to resist to aggressive agents is diminished resulting in massive death of transplanted cells. Although cell immaturity represents a survival advantage, the signalling pathways involved in the control of the immature state remain to be explored. Here, we show that incubation of human myoblasts with retinoic acid impairs skeletal muscle differentiation through activation of the retinoic-acid receptor family of nuclear receptor. Conversely, pharmacologic or genetic inactivation of endogenous retinoic-acid receptors improved myoblast differentiation. Retinoic acid inhibits the expression of early and late muscle differentiation markers and enhances the expression of myogenic specification genes, such as PAX7 and PAX3. These results suggest that the retinoic-acid-signalling pathway might maintain myoblasts in an undifferentiated/immature stage. To determine the relevance of these observations, we characterised the retinoic-acid-signalling pathways in freshly isolated satellite cells in mice and in siMYOD immature human myoblasts. Our analysis reveals that the immature state of muscle progenitors is correlated with high expression of several genes of the retinoic-acid-signalling pathway both in mice and in human. Taken together, our data provide evidences for an important role of the retinoic-acid-signalling pathway in the regulation of the immature state of muscle progenitors.
Databáze: OpenAIRE