Self-aligned gates for scalable silicon quantum computing
Autor: | Leon C. Camenzind, Lukas Czornomaz, Richard J. Warburton, Dominik M. Zumbühl, Veeresh Deshpande, Andreas V. Kuhlmann, Andreas Fuhrer, Simon Geyer |
---|---|
Rok vydání: | 2021 |
Předmět: |
010302 applied physics
Physics Physics and Astronomy (miscellaneous) business.industry Transistor 02 engineering and technology Condensed Matter::Mesoscopic Systems and Quantum Hall Effect 021001 nanoscience & nanotechnology 01 natural sciences law.invention Magnetic field symbols.namesake Pauli exclusion principle law Quantum dot Qubit 0103 physical sciences symbols Optoelectronics 0210 nano-technology business Quantum Spin-½ Quantum computer |
Zdroj: | Applied Physics Letters |
ISSN: | 1077-3118 0003-6951 |
DOI: | 10.1063/5.0036520 |
Popis: | Silicon quantum dot spin qubits have great potential for application in large-scale quantum circuits as they share many similarities with conventional transistors that represent the prototypical example for scalable electronic platforms. However, for quantum dot formation and control, additional gates are required, which add to device complexity and, thus, hinder upscaling. Here, we meet this challenge by demonstrating the scalable integration of a multilayer gate stack in silicon quantum dot devices using self-alignment, which allows for ultra-small gate lengths and intrinsically perfect layer-to-layer alignment. We explore the prospects of these devices as hosts for hole spin qubits that benefit from electrically driven spin control via spin–orbit interaction. Therefore, we study hole transport through a double quantum dot and observe current rectification due to the Pauli spin blockade. The application of a small magnetic field leads to lifting of the spin blockade and reveals the presence of spin–orbit interaction. From the magnitude of a singlet-triplet anticrossing at a high magnetic field, we estimate a spin–orbit energy of ∼ 37 μ eV, which corresponds to a spin–orbit length of ∼ 48 nm. This work paves the way for scalable spin-based quantum circuits with fast, all-electrical qubit control. |
Databáze: | OpenAIRE |
Externí odkaz: |