A new hyperelastic strain energy function and integrity basis of invariants for modelling transversely isotropic materials
Autor: | Zhi-Qiang Feng, Renye Cai, François Peyraut, Frédéric Holweck |
---|---|
Přispěvatelé: | School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University, Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), Université de Technologie de Belfort-Montbeliard (UTBM)-Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), School of Mechanics and Engineering [Chengdu], Southwest Jiaotong University (SWJTU), Laboratoire de Mécanique et d'Energétique d'Evry (LMEE), Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay, Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] (LICB), Université de Bourgogne (UB)-Université de Technologie de Belfort-Montbeliard (UTBM)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Polyconvexity
02 engineering and technology 0203 mechanical engineering Transverse isotropy General Materials Science Boundary value problem Biological soft tissue Polynomial (hyperelastic model) Physics Large deformation Basis (linear algebra) Applied Mathematics Mechanical Engineering Mathematical analysis Function (mathematics) Nonlinear calculation [SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph] 021001 nanoscience & nanotechnology Condensed Matter Physics Strain Energy Function (SEF) Nonlinear system 020303 mechanical engineering & transports Mechanics of Materials Transversely isotropic hyperelastic materials Modeling and Simulation Hyperelastic material Compressibility 0210 nano-technology |
Zdroj: | International Journal of Solids and Structures International Journal of Solids and Structures, 2021, 229, pp.111133. ⟨10.1016/j.ijsolstr.2021.111133⟩ International Journal of Solids and Structures, Elsevier, 2021, 229, pp.111133. ⟨10.1016/j.ijsolstr.2021.111133⟩ |
ISSN: | 0020-7683 |
DOI: | 10.1016/j.ijsolstr.2021.111133⟩ |
Popis: | International audience; The present paper proposes a new Strain Energy Function (SEF) for incompressible transversely isotropic hyperelastic materials, i.e. materials with a single fiber family. This SEF combines polyconvex invariants forming an integrity basis (Ta et al., 2014) in a polynomial and exponential form. Compared to a previous attempt for building a SEF based on the same invariants (Cai et al., 2016), we have reduced the number of material parameters from 23 to 10, without losing any accuracy on the numerical results. The 10 material parameters are identified by comparing the closed form solutions deriving from our model with experimental and numerical data extracted from the literature. These data concern uniaxial tension and shear tests, both parallel and transverse to the fiber direction (Ciarletta et al., 2011; Davis and De Vita, 2014) [3, 4], as well as shear calculations with 9 different fiber angles (Horgan and Murphy, 2017) [5]. Due to the variety of the considered situations, we have developed specific identification strategies based on: 1) the linear or nonlinear nature of the material parameters of the model; 2) the modeling of the free boundary conditions by a spectral approach. |
Databáze: | OpenAIRE |
Externí odkaz: |