Numerical modelling of blood rheology and platelet activation through a stenosed left coronary artery bifurcation
Autor: | Emma K. Neale, Diana C. de Oliveira, Daniel M. Espino, David G. Owen, Duncan E.T. Shepherd |
---|---|
Rok vydání: | 2021 |
Předmět: |
Swine
Physiology Hemodynamics Hematocrit Physical Chemistry Animal Cells Materials Physics Medicine and Health Sciences Platelet Stenosis Multidisciplinary medicine.diagnostic_test Chemistry Viscosity Physics Models Cardiovascular Arteries Hematology Thrombosis Coronary Vessels Body Fluids medicine.anatomical_structure Blood Physical Sciences Cardiology Medicine Anatomy Cellular Types Rheology Artery Research Article Platelets medicine.medical_specialty Science Materials Science Left coronary artery Signs and Symptoms Internal medicine medicine.artery medicine Animals Platelet activation Thrombus Blood Coagulation Blood Cells Coronary Stenosis Biology and Life Sciences Cell Biology medicine.disease Platelet Activation Blood Counts Chemical Properties Cardiovascular Anatomy Blood Vessels Stress Mechanical Clinical Medicine |
Zdroj: | PLoS ONE PLoS ONE, Vol 16, Iss 11, p e0259196 (2021) PLoS ONE, Vol 16, Iss 11 (2021) |
ISSN: | 1932-6203 |
Popis: | Coronary bifurcations are prone to atherosclerotic plaque growth, experiencing regions of reduced wall shear stress (WSS) and increased platelet adhesion. This study compares effects across different rheological approaches on hemodynamics, combined with a shear stress exposure history model of platelets within a stenosed porcine bifurcation. Simulations used both single/multiphase blood models to determine which approach best predicts phenomena associated with atherosclerosis and atherothrombosis. A novel Lagrangian platelet tracking model was used to evaluate residence time and shear history of platelets indicating likely regions of thrombus formation. Results show a decrease in area of regions with pathologically low time-averaged WSS with the use of multiphase models, particularly in a stenotic bifurcation. Significant non-Newtonian effects were observed due to low-shear and varying hematocrit levels found on the outer walls of the bifurcation and distal to the stenosis. Platelet residence time increased 11% in the stenosed artery, with exposure times to low-shear sufficient for red blood cell aggregation (>1.5 s). increasing the risk of thrombosis. This shows stenotic artery hemodynamics are inherently non-Newtonian and multiphase, with variations in hematocrit (0.163–0.617) and elevated vorticity distal to stenosis (+15%) impairing the function of the endothelium via reduced time-averaged WSS regions, rheological properties and platelet activation/adhesion. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |