Time integration algorithm based on divergent series resummation, for ordinary and partial differential equations

Autor: Dina Razafindralandy, Aziz Hamdouni
Přispěvatelé: Laboratoire des Sciences de l'Ingénieur pour l'Environnement - UMR 7356 (LaSIE), Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2013
Předmět:
Physics and Astronomy (miscellaneous)
Discretization
Fluid Mechanics
Borel summation
01 natural sciences
Peturbation method
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
Borel resummation
0101 mathematics
Resummation
Mathematics
Numerical Analysis
Partial differential equation
Applied Mathematics
010102 general mathematics
Mathematical analysis
Fluid mechanics
Divergent series
16. Peace & justice
Computer Science Applications
divergent series
010101 applied mathematics
Divergent geometric series
Computational Mathematics
[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]
Modeling and Simulation
[NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD]
[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
Resolution (algebra)
Zdroj: Journal of Computational Physics
Journal of Computational Physics, Elsevier, 2013, 236, pp.56-73. ⟨10.1016/j.jcp.2012.10.022⟩
ISSN: 0021-9991
1090-2716
DOI: 10.1016/j.jcp.2012.10.022
Popis: International audience; Borel's technique of divergent series resummation is transformed into a numerical code and used as a time integration scheme. It is applied to the resolution of regular and singular problems arising in fluid mechanics. Its efficiency is compared to those of classical discretization schemes.
Databáze: OpenAIRE