Chitosan-Modified Polyethyleneimine Nanoparticles for Enhancing the Carboxylation Reaction and Plants’ CO2 Uptake

Autor: Cyril Routier, Lorenzo Vallan, Yohann Daguerre, Marta Juvany, Emin Istif, Daniele Mantione, Cyril Brochon, Georges Hadziioannou, Åsa Strand, Torgny Näsholm, Eric Cloutet, Eleni Pavlopoulou, Eleni Stavrinidou
Přispěvatelé: Laboratory of Organic Electronics [Norrköping, Sweden] (Department of Science and Technology), Linköping University (LIU), Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Umea Plant Science Center (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU)-Swedish University of Agricultural Sciences (SLU), Institute of Electronic Structure and Laser (FORTH-IESL), Foundation for Research and Technology - Hellas (FORTH), European Project: 800926,HyPhOE
Rok vydání: 2023
Předmět:
Zdroj: ACS Nano
ACS Nano, 2023, 17 (4), ⟨10.1021/acsnano.2c09255⟩
ISSN: 1936-086X
1936-0851
DOI: 10.1021/acsnano.2c09255
Popis: Increasing plants photosynthetic efficienc y is a major challenge that must be addressed in order to cover the food demands of the growing population in the changing climate. Photosynthes i s is greatly limited at the initial carboxylation reaction, where CO2 is converted to the organic acid 3-PGA, catalyzed by the RuBisCO enzyme. RuBisCO has poor affinity for CO2, but also the CO2 concentration at the RuBisCO site is limited by the diffusion of atmospheric CO2 through the various leaf compartments to the reaction site. Beyond genetic engineer-ing, nanotechnology can offer a materials-based approach for enhancing photosynthesis, and yet, it has mostly been explored for the light-dependent reactions. In this work, we developed polyethyleneimine-based nanoparticl e s for enhancing the carbox-ylation reaction. We demonstrate that the nanoparticles can capture CO2 in the form of bicarbonate and increase the CO2 that reacts with the RuBisCO enzyme, enhancing the 3-PGA production in in vitro assays by 20%. The nanoparticles can be introduced to the plant via leaf infiltration and, because of the functionalization with chitosan oligomers, they do not induce any toxic effect to the plant. In the leaves, the nanoparticles localize in the apoplastic space but also spontaneously reach the chloroplasts where photosynthetic activity takes place. Their CO2 loading-dependent fluorescence verifies that, in vivo, they maintain their abi l i t y to capture CO2 and can be therefore reloaded with atmospheric CO2 while in planta. Our results contribute to the development of a nanomaterials-based CO2-concentrating mechanism in plants t h a t can potentially increase photosynthetic efficiency and overall plants CO2 storage. Funding Agencies|European Union [800926, 101042148]; Swedish Research Council [VR-2017-04910]; Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials at Linkoping University [2009-00971]; MCIN/AEI [Ayuda RYC2021-031668-I]
Databáze: OpenAIRE