MGSA/GRO transcription is differentially regulated in normal retinal pigment epithelial and melanoma cells
Autor: | Ann Richmond, R L Shattuck, Glenn J. Jaffe, L D Wood |
---|---|
Rok vydání: | 1994 |
Předmět: |
Gene isoform
DNA Complementary Transcription Genetic medicine.medical_treatment Chemokine CXCL1 Molecular Sequence Data Biology Transfection Cell Line Transactivation Gene expression medicine Humans Northern blot RNA Messenger Growth Substances Pigment Epithelium of Eye Molecular Biology Melanoma Base Sequence Chemotactic Factors Tumor Necrosis Factor-alpha NF-kappa B Cell Biology Molecular biology Neoplasm Proteins Gene Expression Regulation Neoplastic B vitamins Cytokine Gene Expression Regulation Intercellular Signaling Peptides and Proteins Tumor necrosis factor alpha lipids (amino acids peptides and proteins) Oligonucleotide Probes Chemokines CXC Interleukin-1 Research Article |
Zdroj: | Molecular and cellular biology. 14(1) |
ISSN: | 0270-7306 |
Popis: | We have characterized constitutive and cytokine-regulated MGSA/GRO alpha, -beta, and -gamma gene expression in normal retinal pigment epithelial (RPE) cells and a malignant melanoma cell line (Hs294T) to discern the mechanism for MGSA/GRO constitutive expression in melanoma. In RPE cells, constitutive MGSA/GRO alpha, -beta, and -gamma mRNAs are not detected by Northern (RNA) blot analysis although nuclear runoff experiments show that all three genes are transcribed. In Hs294T cells, constitutive MGSA/GRO alpha expression is detectable by Northern blot analysis, and the level of basal MGSA/GRO alpha transcription is 8- to 30-fold higher than in RPE cells. In contrast, in Hs294T cells, basal MGSA/GRO beta and -gamma transcription is only twofold higher than in RPE cells and no beta or gamma mRNA is detected by Northern blot. These data suggest that the constitutive MGSA/GRO alpha mRNA in Hs294T cells is due to increased basal MGSA/GRO alpha gene transcription. The cytokines interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF alpha) significantly increase the mRNA levels for all three MGSA/GRO isoforms in Hs294T and RPE cells, and both transcriptional and posttranscriptional mechanisms are operational. Nuclear runoff assays indicate that in RPE cells, a 1-h IL-1 treatment induces a 10- to 20-fold increase in transcription of MGSA/GRO alpha, -beta and -gamma but only a 2-fold increase in Hs294T cells. Similarly, chloramphenicol acetyltransferase (CAT) reporter gene analysis using the MGSA/GRO alpha, -beta, and -gamma promoter regions demonstrates that IL-1 treatment induces an 8- to 14-fold increase in CAT activity in RPE cells but only a 2-fold increase in Hs294T cells. The effect of deletion or mutation of the MGSA/GRO alpha NF-kappa B element, combined with data from gel mobility shift analyses, indicates that the NF-kappa B p50/p65 heterodimer in RPE cells plays an important role in IL-1- and TNF alpha-enhanced gene transcription. In Hs294T cells, gel shift analyses indicate that IL-1 and TNF alpha induce NF-kappa B complex formation; however, transactivation does not occur, suggesting that subtle differences in the NF-kappa B complexes may result in the inability of the cytokines IL-1 and TNF alpha to activate transcription of the MGSA/GRO genes. IL-1 and TNF alpha posttranscriptionally regulate MGSA/GRO mRNA levels in both cell types. In Hs294T cells, IL-1 increases the half-life of MGSA/GRO alpha from 15 min to 6 h (a 24-fold increase in half-life). These data indicate that IL-1 and TNF alpha transcriptionally and posttranscriptionally regulate MGSA/GRO alpha, -beta, and -gamma mRNA levels in RPE cells, while in Hs294T cells, the major effect of IL-1 and TNF alpha is on mRNA stability. |
Databáze: | OpenAIRE |
Externí odkaz: |